FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL APPLICATIONS

A novel method for performing model updating on finite element models is presented. The approach is particularly tailored to modal analyses of buildings, by which the lowest frequencies, obtained by using sensors and system identification approaches, need to be matched to the numerical ones predicted by the model. This is done by optimizing some unknown … Read more

Regional Complexity Analysis of Algorithms for Nonconvex Smooth Optimization

A strategy is proposed for characterizing the worst-case performance of algorithms for solving nonconvex smooth optimization problems. Contemporary analyses characterize worst-case performance by providing, under certain assumptions on an objective function, an upper bound on the number of iterations (or function or derivative evaluations) required until a pth-order stationarity condition is approximately satisfied. This arguably … Read more

A Stochastic Trust Region Algorithm Based on Careful Step Normalization

An algorithm is proposed for solving stochastic and finite sum minimization problems. Based on a trust region methodology, the algorithm employs normalized steps, at least as long as the norms of the stochastic gradient estimates are within a specified interval. The complete algorithm—which dynamically chooses whether or not to employ normalized steps—is proved to have … Read more

A derivative-free Gauss-Newton method

We present DFO-GN, a derivative-free version of the Gauss-Newton method for solving nonlinear least-squares problems. As is common in derivative-free optimization, DFO-GN uses interpolation of function values to build a model of the objective, which is then used within a trust-region framework to give a globally-convergent algorithm requiring $O(\epsilon^{-2})$ iterations to reach approximate first-order criticality … Read more

A Dense initialization for limited-memory quasi-Newton methods

We consider a family of dense initializations for limited-memory quasi-Newton methods. The proposed initialization exploits an eigendecomposition-based separation of the full space into two complementary subspaces, assigning a different initialization parameter to each subspace. This family of dense initializations is proposed in the context of a limited-memory Broyden- Fletcher-Goldfarb-Shanno (L-BFGS) trust-region method that makes use … Read more

Globally Solving the Trust Region Subproblem Using Simple First-Order Methods

We consider the trust region subproblem which is given by a minimization of a quadratic, not necessarily convex, function over the Euclidean ball. Based on the well-known second-order necessary and sufficient optimality conditions for this problem, we present two sufficient optimality conditions defined solely in terms of the primal variables. Each of these conditions corresponds … Read more

New quasi-Newton method for solving systems of nonlinear equations

In this report, we propose the new Broyden method for solving systems of nonlinear equations, which uses the first derivatives, but it is more efficient than the Newton method (measured by the computational time) for larger dense systems. The new method updates QR decompositions of nonsymmetric approximations of the Jacobian matrix, so it requires $O(n^2)$ … Read more

A Line-Search Algorithm Inspired by the Adaptive Cubic Regularization Framework and Complexity Analysis

Adaptive regularized framework using cubics has emerged as an alternative to line-search and trust-region algorithms for smooth nonconvex optimization, with an optimal complexity amongst second-order methods. In this paper, we propose and analyze the use of an iteration dependent scaled norm in the adaptive regularized framework using cubics. Within such scaled norm, the obtained method … Read more

On the use of the energy norm in trust-region and adaptive cubic regularization subproblems

We consider solving unconstrained optimization problems by means of two popular globalization techniques: trust-region (TR) algorithms and adaptive regularized framework using cubics (ARC). Both techniques require the solution of a so-called “subproblem” in which a trial step is computed by solving an optimization problem involving an approximation of the objective function, called “the model”. The … Read more

A decoupled first/second-order steps technique for nonconvex nonlinear unconstrained optimization with improved complexity bounds

In order to be provably convergent towards a second-order stationary point, optimization methods applied to nonconvex problems must necessarily exploit both first and second-order information. However, as revealed by recent complexity analyzes of some of these methods, the overall effort to reach second-order points is significantly larger when compared to the one of approaching first-order … Read more