Sequencing and Scheduling in Coil Coating with Shuttles

We consider a complex planning problem in integrated steel production. A sequence of coils of sheet metal needs to be color coated in consecutive stages. Di erent coil geometries and changes of coatings may necessitate time-consuming setup work. In most coating stages one can choose between two parallel color tanks in order to reduce setup times. … Read more

Newton–Picard-Based Preconditioning for Linear-Quadratic Optimization Problems with Time-Periodic Parabolic PDE Constraints

We develop and investigate two preconditioners for a basic linear iterative splitting method for the numerical solution of linear-quadratic optimization problems with time-periodic parabolic PDE constraints. The resulting real-valued linear system to be solved is symmetric indefinite. We propose all-at-once symmetric indefinite preconditioners based on a Newton–Picard approach which divides the variable space into slow … Read more

Two-Stage Stochastic Programming Involving CVaR with an Application to Disaster Management

Traditional two-stage stochastic programming is risk-neutral; that is, it considers the expectation as the preference criterion while comparing the random variables (e.g., total cost) to identify the best decisions. However, in the presence of variability risk measures should be incorporated into decision making problems in order to model its effects. In this study, we consider … Read more

MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This … Read more

Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation

We consider two approaches for solving the classical minimum vertex coloring problem�that is, the problem of coloring the vertices of a graph so that adjacent vertices have different colors and minimizing the number of used colors, namely, constraint programming and column generation. Constraint programming is able to solve very efficiently many of the benchmarks but … Read more

A First-Order Augmented Lagrangian Method for Compressed Sensing

We propose a First-order Augmented Lagrangian algorithm (FAL) for solving the basis pursuit problem. FAL computes a solution to this problem by inexactly solving a sequence of L1-regularized least squares sub-problems. These sub-problems are solved using an infinite memory proximal gradient algorithm wherein each update reduces to “shrinkage” or constrained “shrinkage”. We show that FAL … Read more

Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms

Run time distributions or time-to-target plots are very useful tools to characterize the running times of stochastic algorithms for combinatorial optimization. We further explore run time distributions and describe a new tool to compare two algorithms based on stochastic local search. For the case where the running times of both algorithms fit exponential distributions, we … Read more

Benders decomposition for the hop-constrainted survivable network design problem

Given a graph with nonnegative edge weights and a set of pairs of nodes Q, we study the problem of constructing a minimum weight set of edges so that the induced subgraph contains at least K edge-disjoint paths containing at most L edges between each pair in Q. Using the layered representation introduced by Gouveia, … Read more

Economic Impacts of Advanced Weather Forecasting on Energy System Operations

We analyze the impacts of adopting advanced weather forecasting systems at different levels of the decision-making hierarchy of the power grid. Using case studies, we show that state-of-the-art numerical weather prediction (NWP) models can provide high-precision forecasts and uncertainty information that can significantly enhance the performance of planning, scheduling, energy management, and feedback control systems. … Read more

Locating a competitive facility in the plane with a robustness criterion

A new continuous location model is presented and embedded in the literature on robustness in facility location. The multimodality of the model is investigated, and a branch and bound method based on dc optimization is described. Numerical experience is reported, showing that the developed method allows one to solve in a few seconds problems with … Read more