A quasi-Newton projection method for nonnegatively constrained image deblurring

In this paper we present a quasi-Newton projection method for image deblurring. The mathematical problem is a constrained minimization problem, where the objective function is a regularization function and the constraint is the positivity of the solution. The regularization function is a sum of the Kullback-Leibler divergence, used to minimize the error in the presence … Read more

A Parallel Inertial Proximal Optimization Method

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum of two maximal monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of … Read more

DERIVATIVE-FREE METHODS FOR BOUND CONSTRAINED MIXED-INTEGER OPTIMIZATION

We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems … Read more

Symmetry in Scheduling Problems

The presence of symmetry is common in certain types of scheduling problems. Symmetry can occur when one is scheduling a collection of jobs on multiple identical machines, or if one is determining production schedules for identical machines. General symmetry-breaking methods can be strengthened by taking advantage of the special structure of the symmetry group in … Read more

Infeasible Constraint-Reduced Interior-Point Methods for Linear Optimization

Constraint-reduction schemes have been proposed for the solution by means of interior-point methods of linear programs with many more inequality constraints than variables in standard dual form. Such schemes have been shown to be provably convergent and highly efficient in practice. A critical requirement of these schemes is the availability of an initial dual-feasible point. … Read more

The Maximum k-Colorable Subgraph Problem and Orbitopes

Given an undirected node-weighted graph and a positive integer k, the maximum k-colorable subgraph probem is to select a k-colorable induced subgraph of largest weight. The natural integer programming formulation for this problem exhibits a high degree of symmetry which arises by permuting the color classes. It is well known that such symmetry has negative … Read more

First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints

In this paper we consider a mathematical program with semidefinite cone complementarity constraints (SDCMPCC). Such a problem is a matrix analogue of the mathematical program with (vector) complementarity constraints (MPCC) and includes MPCC as a special case. We derive explicit expressions for the strong-, Mordukhovich- and Clarke- (S-, M- and C-)stationary conditions and give constraint … Read more

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation

Dantzig-Wolfe decomposition is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs) in practice. However, the method is not part of any state-of-the-art MIP solver: it needs tailoring to the particular problem; the typical bordered block-diagonal matrix structure determines the decomposition; the resulting column generation subproblems need to be solved efficiently; … Read more

On Duality Theory for Non-Convex Semidefinite Programming

In this paper, with the help of convex-like function, we discuss the duality theory for nonconvex semidefinite programming. Our contributions are: duality theory for the general nonconvex semidefinite programming when Slater’s condition holds; perfect duality for a special case of the nonconvex semidefinite programming for which Slater’s condition fails. We point out that the results … Read more

A contraction method with implementable proximal regularization for linearly constrained convex programming

The proximal point algorithm (PPA) is classical, and it is implicit in the sense that the resulting proximal subproblems may be as difficult as the original problem. In this paper, we show that with appropriate choices of proximal parameters, the application of PPA to the linearly constrained convex programming can result in easy proximal subproblems. … Read more