Bootstrap Robust Prescriptive Analytics

We address the problem of prescribing an optimal decision in a framework where its cost depends on uncertain problem parameters $Y$ that need to be learned from data. Earlier work by Bertsimas and Kallus (2014) transforms classical machine learning methods that merely predict $Y$ from supervised training data $[(x_1, y_1), \dots, (x_n, y_n)]$ into prescriptive … Read more

Random Gradient Extrapolation for Distributed and Stochastic Optimization

In this paper, we consider a class of finite-sum convex optimization problems defined over a distributed multiagent network with $m$ agents connected to a central server. In particular, the objective function consists of the average of $m$ ($\ge 1$) smooth components associated with each network agent together with a strongly convex term. Our major contribution … Read more

A note on using performance and data profiles for training algorithms

It is shown how to use the performance and data profile benchmarking tools to improve algorithms’ performance. An illustration for the BFO derivative-free optimizer suggests that the obtained gains are potentially significant. CitationACM Transactions on Mathematical Software, 45:2 (2019), Article 20.ArticleDownload View PDF

Algorithms for the One-Dimensional Two-Stage Cutting Stock Problem

In this paper, we consider the two-stage extension of the one-dimensional cutting stock problem which arises when technical requirements inhibit the cutting of large stock rolls to demanded widths of finished rolls directly. Therefore, the demands on finished rolls are fulfilled through two subsequent cutting processes, in which the rolls produced in the former are … Read more

Block Coordinate Descent Almost Surely Converges to a Stationary Point Satisfying the Second-order Necessary Condition

Given a non-convex twice continuously differentiable cost function with Lipschitz continuous gradient, we prove that all of the block coordinate gradient descent, block mirror descent and proximal block coordinate descent methods converge to stationary points satisfying the second-order necessary condition, almost surely with random initialization. All our results are ascribed to the center-stable manifold theorem … Read more

Variational inequality formulation for the games with random payoffs

We consider an n-player non-cooperative game with random payoffs and continuous strategy set for each player. The random payoffs of each player are defined using a finite dimensional random vector. We formulate this problem as a chance-constrained game by defining the payoff function of each player using a chance constraint. We first consider the case … Read more

Optimization of Stochastic Problems with Probability Functions via Differential Evolution

Chance constrained programming, quantile/Value-at-Risk (VaR) optimization and integral quantile / Conditional Value-at-Risk (CVaR) optimization problems as Stochastic Programming Problems with Probability Functions (SPP-PF) are one of the most widely studied optimization problems in recent years. As a rule real-life SPP-PF is nonsmooth nonconvex optimization problem with complex geometry of objective function. Moreover, often it cannot … Read more

Uniqueness of Market Equilibria on Networks with Transport Costs

We study the existence and uniqueness of equilibria for perfectly competitive markets in capacitated transport networks. The model under consideration is rather general so that it captures basic aspects of related models in, e.g., gas or electricity networks. We formulate the market equilibrium model as a mixed complementarity problem and show the equivalence to a … Read more

On the Convergence Rate of the Halpern-Iteration

In this work, we give a tight estimate of the rate of convergence for the Halpern-Iteration for approximating a fixed point of a nonexpansive mapping in a Hilbert space. Specifically, we prove that the norm of the residuals is upper bounded by the distance of the initial iterate to the closest fixed point divided by … Read more

Accelerating block coordinate descent methods with identification strategies

This work is about active set identification strategies aimed at accelerating block-coordinate descent methods (BCDM) applied to large-scale problems. We start by devising an identification function tailored for bound-constrained composite minimization together with an associated version of the BCDM, called Active BCDM, that is also globally convergent. The identification function gives rise to an efficient … Read more