Asymptotic results of Stochastic Decomposition for Two-stage Stochastic Quadratic Programming

This paper presents stochastic decomposition (SD) algorithms for two classes of stochastic programming problems: 1) two-stage stochastic quadratic-linear programming (SQLP) in which a quadratic program defines the objective function in the first stage and a linear program defines the value function in the second stage; 2) two-stage stochastic quadratic-quadratic programming (SQQP) which has quadratic programming … Read more

A proximal ADMM with the Broyden family for Convex Optimization Problems

Alternating direction methods of multipliers (ADMM) have been well studied and effectively used in various application fields. The classical ADMM must solve two subproblems exactly at each iteration. To overcome the difficulty of computing the exact solution of the subproblems, some proximal terms are added to the subproblems. Recently, Gu and Yamashita studied a special … Read more

An Iterative Re-optimization Framework for the Dynamic Vehicle Routing Problem with Roaming Delivery Locations

Branch-and-price has established itself as an effective solution methodology for a wide variety of planning problems. We investigate its potential as a solution method- ology for solving operational problems. Specifically, we explore its potential in the context of a dynamic variant of the vehicle routing problem with roaming delivery locations, in which customer itineraries may … Read more

Efficient global unconstrained black box optimization

For the unconstrained optimization of black box functions, this paper introduces a new randomized algorithm called VRBBO. In practice, VRBBO matches the quality of other state-of-the-art algorithms for finding, in small and large dimensions, a local minimizer with reasonable accuracy. Although our theory guarantees only local minimizers our heuristic techniques turn VRBBO into an efficient … Read more

The primal-dual hybrid gradient method reduces to a primal method for linearly constrained optimization problems

In this work, we show that for linearly constrained optimization problems the primal-dual hybrid gradient algorithm, analyzed by Chambolle and Pock [3], can be written as an entirely primal algorithm. This allows us to prove convergence of the iterates even in the degenerate cases when the linear system is inconsistent or when the strong duality … Read more

Local convergence analysis of the Levenberg-Marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound condition

The Levenberg-Marquardt method (LM) is widely used for solving nonlinear systems of equations, as well as nonlinear least-squares prob- lems. In this paper, we consider local convergence issues of the LM method when applied to nonzero-residue nonlinear least-squares problems under an error bound condition, which is weaker than requiring full-rank of the Jacobian in a … Read more

On Lifted Cover Inequalities: A New Lifting Procedure with Unusual Properties

Lifted cover inequalities are well-known cutting planes for 0-1 linear programs. We show how one of the earliest lifting procedures, due to Balas, can be significantly improved. The resulting procedure has some unusual properties. For example, (i) it can yield facet-defining inequalities even if the given cover is not minimal, (ii) it can yield facet-defining … Read more

Adaptive Cubic Regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization

We consider the Adaptive Regularization with Cubics approach for solving nonconvex optimization problems and propose a new variant based on inexact Hessian information chosen dynamically. The theoretical analysis of the proposed procedure is given. The key property of ARC framework, constituted by optimal worst-case function/derivative evaluation bounds for first- and second-order critical point, is guaranteed. … Read more

An Integer Programming Formulation of the Key Management Problem in Wireless Sensor Networks

With the advent of modern communications systems, much attention has been put on developing methods for securely transferring information between constituents of wireless sensor networks. To this effect, we introduce a mathematical programming formulation for the key management problem, which broadly serves as a mechanism for encrypting communications. In particular, an integer programming model of … Read more

Improved Decision Rule Approximations for Multi-Stage Robust Optimization via Copositive Programming

We study decision rule approximations for generic multi-stage robust linear optimization problems. We consider linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and consider quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP-hard but … Read more