The condition of a function relative to a polytope

The condition number of a smooth convex function, namely the ratio of its smoothness to strong convexity constants, is closely tied to fundamental properties of the function. In particular, the condition number of a quadratic convex function is precisely the square of the diameter-to-width ratio of a canonical ellipsoid associated to the function. Furthermore, the … Read more

A structured quasi-Newton algorithm for optimizing with incomplete Hessian information

We present a structured quasi-Newton algorithm for unconstrained optimization problems that have unavailable second-order derivatives or Hessian terms. We provide a formal derivation of the well-known BFGS secant update formula that approximates only the missing Hessian terms, and we propose a line-search quasi-Newton algorithm based on a modification of Wolfe conditions that converges to first-order … Read more

Strong formulations for quadratic optimization with M-matrices and semi-continuous variables

We study quadratic optimization with semi-continuous variables and an M-matrix, i.e., PSD with non-positive off-diagonal entries. This structure arises in image segmentation, portfolio optimization, as well as a substructure of general quadratic optimization problems. We prove, under mild assumptions, that the minimization problem is solvable in polynomial time by showing its equivalence to a submodular … Read more

A Decision Tool based on a Multi-Objective Methodology for designing High-Pressure Thermal Treatments in Food Industry

In this work, we propose a methodology for designing High-Pressure Thermal processes for food treatment. This approach is based on a multi-objective preference-based evolutionary optimization algorithm, called WASF-GA, combined with a decision strategy which provides the food engineer with the best treatment in accordance with some quality requirements. The resulting method is compared to a … Read more

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to … Read more

Optimal Black Start Allocation for Power System Restoration

Equipment failures, operator errors, natural disasters and cyber-attacks can and have caused extended blackouts of the electric grid. Even though such events are rare, preparedness for them is critical because extended power outages endanger human lives, compromise national security, or result in economic losses of billions of dollars. Since most of the generating units cannot … Read more

A Shifted Primal-Dual Interior Method for Nonlinear Optimization

Interior methods provide an effective approach for the treatment of inequality constraints in nonlinearly constrained optimization. A new primal-dual interior method is proposed based on minimizing a sequence of shifted primal-dual penalty-barrier functions. Certain global convergence properties are established. In particular, it is shown that every limit point is either an infeasible stationary point, or … Read more

A deterministic algorithm for solving stochastic minimax dynamic programmes

In this paper, we present an algorithm for solving stochastic minimax dynamic programmes where state and action sets are convex and compact. A feature of the formulations studied is the simultaneous non-rectangularity of both `min’ and `max’ feasibility sets. We begin by presenting convex programming upper and lower bound representations of saddle functions — extending … Read more

A Notion of Total Dual Integrality for Convex, Semidefinite, and Extended Formulations

Total dual integrality is a powerful and unifying concept in polyhedral combinatorics and integer programming that enables the refinement of geometric min-max relations given by linear programming Strong Duality into combinatorial min-max theorems. The definition of total dual integrality (TDI) revolves around the existence of optimal dual solutions that are integral, and thus naturally applies … Read more

An Alternating Minimization Method for Matrix Completion Problem

In this paper, we focus on solving matrix completion problem arising from applications in the fields of information theory, statistics, engineering, etc. However, the matrix completion problem involves nonconvex rank constraints which make this type of problem difficult to handle. Traditional approaches use a nuclear norm surrogate to replace the rank constraints. The relaxed model … Read more