Swapping objectives accelerates Davis-Yin splitting

In this work, we investigate the application of Davis–Yin splitting (DYS) to convex optimization problems and demonstrate that swapping the roles of the two nonsmooth convex functions can result in a faster convergence rate. Such a swap typically yields a different sequence of iterates, but its impact on convergence behavior has been largely understudied or … Read more

Preconditioning for rational approximation

In this paper, we show that minimax rational approximations can be enhanced by introducing a controlling parameter on the denominator of the rational function. This is implemented by adding a small set of linear constraints to the underlying optimization problem. The modification integrates naturally into approximation models formulated as linear programming problems. We demonstrate our … Read more

On Vectorization Strategies in Set Optimization

In this paper, we investigate solution approaches in set optimization that are based on so-called vectorization strategies. Thereby, the original set-valued problems are reformulated as multi-objective optimization problems, whose optimal solution sets approximate those of the original ones in a certain sense. We consider both infinite-dimensional and finite-dimensional vectorization approaches. In doing so, we collect … Read more

Strength of the Upper Bounds for the Edge-Weighted Maximum Clique Problem

We theoretically and computationally compare the strength of the two main upper bounds from the literature on the optimal value of the Edge-Weighted Maximum Clique Problem (EWMCP). We provide a set of instances for which the ratio between either of the two upper bounds and the optimal value of the EWMCP is unbounded. This result … Read more

Optimized methods for composite optimization: a reduction perspective

Recent advances in convex optimization have leveraged computer-assisted proofs to develop optimized first-order methods that improve over classical algorithms. However, each optimized method is specially tailored for a particular problem setting, and it is a well-documented challenge to extend optimized methods to other settings due to their highly bespoke design and analysis. We provide a general … Read more

Maximal entropy in the moment body

A moment body is a linear projection of the spectraplex, the convex set of trace-one positive semidefinite matrices. Determining whether a given point lies within a given moment body is a problem with numerous applications in quantum state estimation or polynomial optimization. This moment body membership oracle can be addressed with semidefinite programming, for which … Read more

Complexity of normalized stochastic first-order methods with momentum under heavy-tailed noise

In this paper, we propose practical normalized stochastic first-order methods with Polyak momentum, multi-extrapolated momentum, and recursive momentum for solving unconstrained optimization problems. These methods employ dynamically updated algorithmic parameters and do not require explicit knowledge of problem-dependent quantities such as the Lipschitz constant or noise bound. We establish first-order oracle complexity results for finding … Read more

First-order methods for stochastic and finite-sum convex optimization with deterministic constraints

In this paper, we study a class of stochastic and finite-sum convex optimization problems with deterministic constraints. Existing methods typically aim to find an \(\epsilon\)-expectedly feasible stochastic optimal solution, in which the expected constraint violation and expected optimality gap are both within a prescribed tolerance ϵ. However, in many practical applications, constraints must be nearly … Read more

Best-Response Dynamics for Large-Scale Integer Programming Games with Applications to Aquatic Invasive Species Prevention

This paper presents a scalable algorithm for computing the best pure Nash equilibrium (PNE) in large-scale integer programming games (IPGs). While recent advances in IPG algorithms are extensive, existing methods are limited to a small number of players, typically 𝑛 = 2, 3. Motivated by a county-level aquatic invasive species (AIS) prevention problem involving 84 … Read more