Global Multi-Objective Simulation Optimization: Error Bounds and Convergence Rates

Consider the context of solving a multi-objective simulation optimization problem with one or more continuous objective functions to global optimality on a compact feasible set. For a simple algorithm that consists of selecting a finite set of feasible points using a space-filling design, expending the same number of simulation replications at each point to estimate … Read more

A Simple Adaptive Proximal Gradient Method for Nonconvex Optimization

Consider composite nonconvex optimization problems where the objective function consists of a smooth nonconvex term (with Lipschitz-continuous gradient) and a convex (possibly nonsmooth) term. Existing parameter-free methods for such problems often rely on complex multi-loop structures, require line searches, or depend on restrictive assumptions (e.g., bounded iterates). To address these limitations, we introduce a novel … Read more

Moment-sos and spectral hierarchies for polynomial optimization on the sphere and quantum de Finetti theorems

We revisit the convergence analysis of two approximation hierarchies for polynomial optimization on the unit sphere. The first one is based on the moment-sos approach and gives semidefinite bounds for which Fang and Fawzi (2021) showed an analysis in \(O(1/r^2)\) for the r-th level bound, using the polynomial kernel method. The second hierarchy was recently … Read more

MadNCL: A GPU Implementation of Algorithm NCL for Large-Scale, Degenerate Nonlinear Programs

We present a GPU implementation of Algorithm NCL, an augmented Lagrangian method for solving large-scale and degenerate nonlinear programs. Although interior-point methods and sequential quadratic programming are widely used for solving nonlinear programs, the augmented Lagrangian method is known to offer superior robustness against constraint degeneracies and can rapidly detect infeasibility. We introduce several enhancements … Read more

Consolidation in Crowdshipping with Scheduled Transfer Lines: A Surrogate-Based Network Design Framework

Abstract: Crowdshipping has gained attention as an emerging delivery model thanks to advantages such as flexibility and an asset-light structure. Yet, it chronically suffers from a lackof mechanisms to create and exploit consolidation opportunities, limiting its efficiency and scalability. This work contributes to the literature in two ways: first, by introducing a novel consolidation concept … Read more

Optimal participation of energy communities in electricity markets under uncertainty. A multi-stage stochastic programming approach

We propose a multi-stage stochastic programming model for the optimal participation of energy communities in electricity markets. The multi-stage aspect captures the different times at which variable renewable generation and electricity prices are observed. This results in large-scale optimization problem instances containing large scenario trees with 34 stages, to which scenario reduction techniques are applied. … Read more

On vehicle routing problems with stochastic demands — Generic integer L-shaped formulations

We study a broad class of vehicle routing problems in which the cost of a route is allowed to be any nonnegative rational value computable in polynomial time in the input size. To address this class, we introduce a unifying framework that generalizes existing integer L-shaped (ILS) formulations developed for vehicle routing problems with stochastic … Read more

Continuous-time Analysis of a Stochastic ADMM Method for Nonconvex Composite Optimization

In this paper, we focus on nonconvex composite optimization, whose objective is the sum of a smooth but possibly nonconvex function and a composition of a weakly convex function coupled with a linear operator. By leveraging a smoothing technique based on Moreau envelope, we propose a stochastic proximal linearized ADMM algorithm (SPLA). To understand its … Read more

On Integer Programming for the Binarized Neural Network Verification Problem

Binarized neural networks (BNNs) are feedforward neural networks with binary weights and activation functions. In the context of using a BNN for classification, the verification problem seeks to determine whether a small perturbation of a given input can lead it to be misclassified by the BNN, and the robustness of the BNN can be measured … Read more