A Ramsey-Type Equilibrium Model with Spatially Dispersed Agents

We present a spatial and time-continuous Ramsey-type equilibrium model for households and firms that interact on a spatial domain to model labor mobility in the presence of commuting costs. After discretization in space and time, we obtain a mixed complementarity problem that represents the spatial equilibrium model. We prove existence of equilibria using the theory … Read more

Mixed-Integer Programming Techniques for the Minimum Sum-of-Squares Clustering Problem

The minimum sum-of-squares clustering problem is a very important problem in data mining and machine learning with very many applications in, e.g., medicine or social sciences. However, it is known to be NP-hard in all relevant cases and to be notoriously hard to be solved to global optimality in practice. In this paper, we develop … Read more

On a Computationally Ill-Behaved Bilevel Problem with a Continuous and Nonconvex Lower Level

It is well known that bilevel optimization problems are hard to solve both in theory and practice. In this paper, we highlight a further computational difficulty when it comes to solving bilevel problems with continuous but nonconvex lower levels. Even if the lower-level problem is solved to ɛ-feasibility regarding its nonlinear constraints for an arbitrarily … Read more

Adaptive Nonlinear Optimization of District Heating Networks Based on Model and Discretization Catalogs

We propose an adaptive optimization algorithm for operating district heating networks in a stationary regime. The behavior of hot water flow in the pipe network is modeled using the incompressible Euler equations and a suitably chosen energy equation. By applying different simplifications to these equations, we derive a catalog of models. Our algorithm is based … Read more

Exact Methods for Discrete Γ-Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem

Developing solution methods for mixed-integer bilevel problems is known to be a challenging task – even if all parameters of the problem are exactly known. Many real-world applications of bilevel optimization, however, involve data uncertainty due to some kind of bounded rationality. We study mixed-integer min-max problems with a follower who faces uncertainties regarding the … Read more

Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems

We consider mixed-integer linear quantile minimization problems that yield large-scale problems that are very hard to solve for real-world instances. We motivate the study of this problem class by two important real-world problems: a maintenance planning problem for electricity networks and a quantile-based variant of the classic portfolio optimization problem. For these problems, we develop … Read more

Time-Domain Decomposition for Mixed-Integer Optimal Control Problems

We consider mixed-integer optimal control problems, whose optimality conditions involve global combinatorial optimization aspects for the corresponding Hamiltonian pointwise in time. We propose a time-domain decomposition, which makes this problem class accessible for mixed-integer programming using parallel-in-time direct discretizations. The approach is based on a decomposition of the optimality system and the interpretation of the … Read more

Time-Domain Decomposition for Optimal Control Problems Governed by Semilinear Hyperbolic Systems with Mixed Two-Point Boundary Conditions

In this article, we continue our work (Krug et al., 2021) on time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations in that we now consider mixed two-point boundary value problems and provide an in-depth well-posedness analysis. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems … Read more

A Penalty Branch-and-Bound Method for Mixed-Binary Linear Complementarity Problems

Linear complementarity problems (LCPs) are an important modeling tool for many practically relevant situations but also have many important applications in mathematics itself. Although the continuous version of the problem is extremely well studied, much less is known about mixed-integer LCPs (MILCPs) in which some variables have to be integer-valued in a solution. In particular, … Read more

A Gentle and Incomplete Introduction to Bilevel Optimization

These are lecture notes on bilevel optimization. The class of bilevel optimization problems is formally introduced and motivated using examples from different fields. Afterward, the main focus is on how to solve linear and mixed-integer linear bilevel optimization problems. To this end, we first consider various single-level reformulations of bilevel optimization problems with linear or … Read more