A biased random-key genetic algorithm for job-shop scheduling

This paper presents a local search, based on a new neighborhood for the job-shop scheduling problem, and its application within a biased random-key genetic algorithm. Schedules are constructed by decoding the chromosome supplied by the genetic algorithm with a procedure that generates active schedules. After an initial schedule is obtained, a local search heuristic, based … Read more

A Multi-Product Risk-Averse Newsvendor with Exponential Utility Function

We consider a multi-product newsvendor using an exponential utility function. We first establish a few basic properties for the newsvendor regarding the convexity of the model and monotonicity of the impact of risk aversion on the solution. When the product demands are independent and the ratio of the degree of risk aversion to the number … Read more

Concepts and Applications of Stochastically Weighted Stochastic Dominance

Stochastic dominance theory provides tools to compare random entities. When comparing random vectors (say X and Y ), the problem can be viewed as one of multi-criterion decision making under uncertainty. One approach is to compare weighted sums of the components of these random vectors using univariate dominance. In this paper we propose new concepts … Read more

Job-Shop Scheduling in a Body Shop

We study a generalized job-shop problem called the body shop scheduling problem (bssp). This problem arises from the industrial application of welding in a car body production line, where possible collisions between industrial robots have to be taken into account. bssp corresponds to a job-shop problem where the operations of a job have to follow … Read more

New VNS heuristic for Total Flowtime Flowshop Scheduling Problem

This paper develops a new VNS approach to Permutational Flow shop Scheduling Problem with Total Flow time criterion. There are many hybrid approaches inthe problem’s literature, that make use of VNS internally, usually applying job insert neighbourhood followed by job interchange neighbourhood. In this study different ways to combine both neighbourhoods were examined. All tests … Read more

Solution Methods for the Multi-trip Elementary Shortest Path Problem with Resource Constraints

We investigate the multi-trip elementary shortest path problem (MESPPRC) with resource constraints in which the objective is to find a shortest path between a source node and a sink node such that nodes other than the specified replenishment node are visited at most once and resource constraints are not violated. After each visit to the … Read more

A Chance-Constrained Model & Cutting Planes for Fixed Broadband Wireless Networks

In this paper, we propose a chance-constrained mathematical program for fixed broadband wireless networks under unreliable channel conditions. The model is reformulated as integer linear program and valid inequalities are derived for the corresponding polytope. Computational results show that by an exact separation approach the optimality gap is closed by 42 % on average. Article … Read more

Planning Wireless Networks with Demand Uncertainty using Robust Optimization

An optimal planning of future wireless networks is fundamental to satisfy rising traffic demands jointly with the utilization of sophisticated techniques, such as OFDMA. Current methods for this task require a static model of the problem. However, uncertainty of data arises frequently in wireless networks, e. g., fluctuat- ing bit rate requirements. In this paper, … Read more

A stabilized model and an efficient solution method for the yearly optimal power management

We propose a stabilized model for the electricity generation management problem on a yearly scale. We also introduce an original and efficient solution method in a particular case. Our model is compared to other management methods and offers the best average cost while preserving a reasonable standard deviation of the cost over a set of … Read more

Stochastic Optimization for Power System Configuration with Renewable Energy in Remote Areas

This paper presents the first stochastic mixed integer programming model for a comprehensive hybrid power system design, including renewable energy generation, storage device, transmission network, and thermal generators, in remote areas. Given the computational complexity of the model, we developed a Benders’ decomposition algorithm with Pareto-optimal cuts. Computational results show significant improvement in our ability … Read more