Best-Response Dynamics for Large-Scale Integer Programming Games with Applications to Aquatic Invasive Species Prevention

This paper presents a scalable algorithm for computing the best pure Nash equilibrium (PNE) in large-scale integer programming games (IPGs). While recent advances in IPG algorithms are extensive, existing methods are limited to a small number of players, typically 𝑛 = 2, 3. Motivated by a county-level aquatic invasive species (AIS) prevention problem involving 84 … Read more

Identifying Regions Vulnerable to Obstetric Unit Closures using Facility Location Modeling with Patient Behavior

Limited geographic access to obstetric care prevents some pregnant people from receiving timely and risk-appropriate services. This challenge is especially acute in rural areas, where rural residents often travel far distances to obstetric care. Furthermore, obstetric access is worsening due to the growing number of closures of rural hospitals’ obstetric units, often due to financial … Read more

An Optimization-Based Algorithm for Fair and Calibrated Synthetic Data Generation

  For agent based micro simulations, as used for example for epidemiological modeling during the COVID-19 pandemic, a realistic base population is crucial. Beyond demographic variables, health-related variables should also be included. In Germany, health-related surveys are typically small in scale, which presents several challenges when generating these variables. Specifically, strongly imbalanced classes and insufficient … Read more

Two approaches to piecewise affine approximation

The problem of approximation by piecewise affine functions has been studied for several decades (least squares and uniform approximation). If the location of switches from one affine piece to another (knots for univariate approximation) is known the problem is convex and there are several approaches to solve this problem. If the location of such switches … Read more

Data-Driven Multistage Scheduling Optimization for Refinery Production under Uncertainty: Systematic Framework, Modeling Approach, and Application Analysis

The widespread existence of various uncertainties makes the inherently complex refinery production scheduling problem even more challenging. To address this issue, this paper proposes a viable systematic data-driven multistage scheduling optimization framework and develops a corresponding structured modeling methodology. Under this paradigm, unit-level advanced control and plant-level intelligent scheduling are coordinated to jointly deal with … Read more

Mixed-Feature Logistic Regression Robust to Distribution Shifts

Logistic regression models are widely used in the social and behavioral sciences and in high-stakes domains, due to their simplicity and interpretability properties. At the same time, such domains are permeated by distribution shifts, where the distribution generating the data changes between training and deployment. In this paper, we study a distributionally robust logistic regression … Read more

A surplus-maximizing two-sided multi-period non-convex ISO auction market

Since the inception of ISOs, Locational Marginal Prices (LMPs) alone were not market clearing or incentive compatible because an auction winner who offered its avoidable costs could lose money at the LMPs. ISOs used make-whole payments to ensure that market participants did not lose money. Make-whole payments were not public, creating transparency issues. Over time, … Read more

Responsible Machine Learning via Mixed-Integer Optimization

In the last few decades, Machine Learning (ML) has achieved significant success across domains ranging from healthcare, sustainability, and the social sciences, to criminal justice and finance. But its deployment in increasingly sophisticated, critical, and sensitive areas affecting individuals, the groups they belong to, and society as a whole raises critical concerns around fairness, transparency … Read more

Paving the Way for More Accessible Cancer Care in Low-Income Countries with Optimization

Cancers are a growing cause of morbidity and mortality in low-income countries. Geographic access plays a key role in both timely diagnosis and successful treatment. In areas lacking well-developed road networks, seasonal weather events can lengthen already long travel times to access care. Expanding facilities to offer cancer care is expensive and requires staffing by … Read more

A data-driven robust approach to a problem of optimal replacement in maintenance

Maintenance strategies are pivotal in ensuring the reliability and performance of critical components within industrial machines and systems. However, accurately determining the optimal replacement time for such components under stress and deterioration remains a complex task due to inherent uncertainties and variability in operating conditions. In this paper, we propose a comprehensive approach based on … Read more