Branch-and-cut-and-price for the Cardinality-constrained Multi-cycle Problem in Kidney Exchange

The establishment of kidney exchange programs has dramatically improved rates for kidney transplants by matching donors to compatible patients who would otherwise fail to receive a kidney for transplant. Rather than simply swapping kidneys between two patient-donor pairs, having multiple patient-donors pairs simultaneously donate kidneys in a cyclic manner enables all participants to receive a … Read more

Objective Selection for Cancer Treatment: An Inverse Optimization Approach

In radiation therapy treatment-plan optimization, selecting a set of clinical objectives that are tractable and parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error based on the treatment planner’s subjective assessment, which often makes the planning process inefficient and inconsistent. We develop the objective selection problem … Read more

Adjustable robust treatment-length optimization in radiation therapy

Traditionally, optimization of radiation therapy (RT) treatment plans has been done before the initiation of RT course, using population-wide estimates for patients’ response to therapy. However, recent technological advancements have enabled monitoring individual patient response during the RT course, in the form of biomarkers. Although biomarker data remains subject to substantial uncertainties, information extracted from … Read more

Derivative-Free Superiorization With Component-Wise Perturbations

Superiorization reduces, not necessarily minimizes, the value of a target function while seeking constraints-compatibility. This is done by taking a solely feasibility-seeking algorithm, analyzing its perturbations resilience, and proactively perturbing its iterates accordingly to steer them toward a feasible point with reduced value of the target function. When the perturbation steps are computationally efficient, this … Read more

Superiorization and perturbation resilience of algorithms: A continuously updated bibliography

This document presents a, chronologically ordered, bibliography of scientific publications on the superiorization methodology and perturbation resilience of algorithms which is compiled and continuously updated by us at: Since the topic is relatively new it is possible to trace the work that has been published about it since its inception. To the best of … Read more

An Improved Method of Total Variation Superiorization Applied to Reconstruction in Proton Computed Tomography

Previous work showed that total variation superiorization (TVS) improves reconstructed image quality in proton computed tomography (pCT). The structure of the TVS algorithm has evolved since then and this work investigated if this new algorithmic structure provides additional benefits to pCT image quality. Structural and parametric changes introduced to the original TVS algorithm included: (1) … Read more

Cut-Pursuit Algorithm for Regularizing Nonsmooth Functionals with Graph Total Variation

We present an extension of the cut-pursuit algorithm, introduced by Landrieu and Obozinski (2017), to the graph total-variation regularization of functions with a separable nondifferentiable part. We propose a modified algorithmic scheme as well as adapted proofs of convergence. We also present a heuristic approach for handling the cases in which the values associated to … Read more

A multi-period production and distribution optimization model for radiopharmaceuticals

This paper addresses the manufacturing and distribution of short-lived radio-pharmaceuticals which are mainly used in diagnostic imaging studies. We develop a mixed integer nonlinear optimization model that is flexible enough to capture the complex underlying nuclear physics of the production process of fludeoxyglucose (FDG), which is widely used in oncology and cardiology, as well as … Read more

A Note on the Forward-Douglas–Rachford Splitting for Monotone Inclusion and Convex Optimization

We shed light on the structure of the “three-operator” version of the forward-Douglas–Rachford splitting algorithm for finding a zero of a sum of maximally monotone operators $A + B + C$, where $B$ is cocoercive, involving only the computation of $B$ and of the resolvent of $A$ and of $C$, separately. We show that it … Read more

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem

The main task of genetic regulatory networks is to construct a sparse probabilistic Boolean network (PBN) based on a given transition-probability matrix and a set of Boolean networks (BNs). In this paper, a Bregman alternating direction method of multipliers (BADMM) is proposed to solve the minimization problem raised in PBN. All the customized subproblem-solvers of … Read more