Two decades of blackbox optimization applications

This work reviews blackbox optimization applications over the last twenty years, addressed using direct search optimization methods. Emphasis is placed on the Mesh Adaptive Direct Search (MADS) derivative-free optimization algorithm. The core of the document describes applications in three specific fields: Energy, materials science, and computational engineering design. Other applications in science and engineering as … Read more

New exact approaches for the combined cell layout problem and extensions of the multi-bay facility layout problem

In this paper we consider the Combined Cell Layout Problem (CCLP), the Multi-Bay Facility Layout Problem (MBFLP) and several generalizations of the MBFLP, which have wide applications, e.g., in factory planning, heavy manufacturing, semiconductor fabrication and arranging rooms in hospitals. Given a set of cells of type single-row or directed-circular and a set of one-dimensional … Read more

Robot Dance: a mathematical optimization platform for intervention against Covid-19 in a complex network

Robot Dance is a computational platform developed in response to the coronavirus outbreak, to support the decision making on public policies at a regional level. The tool is suitable for understanding and suggesting levels of intervention needed to contain the spread of diseases when the mobility of inhabitants through a regional network is a concern. … Read more

Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy

The design of minimum-compliance bending-resistant structures with continuous cross-section parameters is a challenging task because of its inherent non-convexity. Our contribution develops a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is … Read more

The Bipartite Boolean Quadric Polytope with Multiple-Choice Constraints

We consider the bipartite boolean quadric polytope (BQP) with multiple-choice constraints and analyse its combinatorial properties. The well-studied BQP is defined as the convex hull of all quadric incidence vectors over a bipartite graph. In this work, we study the case where there is a partition on one of the two bipartite node sets such … Read more

Adaptable Energy Management System for Smart Buildings

This paper presents a novel adaptable energy management system for smart buildings. In this framework we model the energy consumption of a living unit, and its energy exchange with the surroundings. We explicitly consider the impact of the outside environment and design features such as building orientation, automatic shading, and double facade. We formulate this … Read more

Mixed-integer Linear Programming Models and Algorithms for Generation and Transmission Expansion Planning of Power Systems

With the increasing penetration of renewable generating units, especially in remote areas not well connected with load demand, there are growing interests to co-optimize generation and transmission expansion planning (GTEP) in power systems. Due to the volatility in renewable generation, a planner needs to include the operating decisions into the planning model to guarantee feasibility. … Read more

Distributionally Robust Facility Location with Bimodal Random Demand

In this paper, we consider a decision-maker who wants to determine a subset of locations from a given set of candidate sites to open facilities and accordingly assign customer demand to these open facilities. Unlike classical facility location settings, we focus on a new setting where customer demand is bimodal, i.e., display, or belong to, … Read more

Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality

Wasserstein distributionally robust optimization (DRO) aims to find robust and generalizable solutions by hedging against data perturbations in Wasserstein distance. Despite its recent empirical success in operations research and machine learning, existing performance guarantees for generic loss functions are either overly conservative due to the curse of dimensionality, or plausible only in large sample asymptotics. … Read more

Dual optimal design and the Christoffel-Darboux polynomial

The purpose of this short note is to show that the Christoffel-Darboux polynomial, useful in approximation theory and data science, arises naturally when deriving the dual to the problem of semi-algebraic D-optimal experimental design in statistics. It uses only elementary notions of convex analysis. Article Download View Dual optimal design and the Christoffel-Darboux polynomial