Fair stochastic vehicle routing with partial deliveries

A common assumption in the models for the vehicle routing problem with stochastic demands is that all demands must be satisfied. This is achieved by including recourse actions in two-stage stochastic programming formulations or by ensuring with a high probability that all demand fits within the vehicle capacity (chance-constrained formulations). In this work, we relax … Read more

When Deep Learning Meets Polyhedral Theory: A Survey

In the past decade, deep learning became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural networks in tasks such as computer vision and natural language processing. Meanwhile, the structure of neural networks converged back to simpler representations based on piecewise constant and piecewise linear functions such as the Rectified … Read more

The alternating simultaneous Halpern-Lions-Wittmann-Bauschke algorithm for finding the best approximation pair for two disjoint intersections of convex sets

Given two nonempty and disjoint intersections of closed and convex subsets, we look for a best approximation pair relative to them, i.e., a pair of points, one in each intersection, attaining the minimum distance between the disjoint intersections. We propose an iterative process based on projections onto the subsets which generate the intersections. The process … Read more

Algorithms for Cameras View-Frame Placement Problems in the Presence of an Adversary and Distributional Ambiguity

In this paper, we introduce cameras view-frame placement problem (denoted by CFP) in the presence an adversary whose objective is to minimize the maximum coverage by p cameras in response to input provided by n autonomous agents in a remote location. We allow uncertainty in the success of attacks, incomplete information of the probability distribution … Read more

Stable Set Polytopes with High Lift-and-Project Ranks for the Lovász-Schrijver SDP Operator

\(\) We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator \( \text{LS}_+\), with a particular focus on a search for relatively small graphs with high \( \text{LS}_+\)-rank (the least number of iterations of the \( \text{LS}_+\) operator on the fractional stable set polytope to compute … Read more

Column Elimination for Capacitated Vehicle Routing Problems

We introduce a column elimination procedure for the capacitated vehicle routing problem. Our procedure maintains a decision diagram to represent a relaxation of the set of feasible routes, over which we define a constrained network flow. The optimal solution corresponds to a collection of paths in the decision diagram and yields a dual bound. The … Read more

Multithread Interval Scheduling with Flexible Machine Availabilities: Complexity and Efficient Algorithms

In the known Interval Scheduling problem with Machine Availabilities (ISMA), each machine has a contiguous availability interval and each job has a specic time interval which has to be scheduled. The objective is to schedule all jobs such that the machines’ availability intervals are respected or to decide that there exists no such schedule. We … Read more

On Supervalid Inequalities for Binary Interdiction Games

Supervalid inequalities are a specific type of constraints often used within the branch-and-cut framework to strengthen the linear relaxation of mixed-integer programs. These inequalities share the particular characteristic of potentially removing feasible integer solutions as long as they are already dominated by an incumbent solution. This paper focuses on supervalid inequalities for solving binary interdiction … Read more

Semidefinite approximations for bicliques and biindependent pairs

\(\) We investigate some graph parameters dealing with biindependent pairs $(A,B)$ in a bipartite graph $G=(V_1\cup V_2,E)$, i.e., pairs $(A,B)$ where $A\subseteq V_1$, $B\subseteq V_2$ and $A\cup B$ is independent. These parameters also allow to study bicliques in general graphs. When maximizing the cardinality $|A\cup B|$ one finds the stability number $\alpha(G)$, well-known to be … Read more

Inefficiency of pure Nash equilibria in network congestion games: the impact of symmetry and graph structure

We study the inefficiency of pure Nash equilibria in symmetric unweighted network congestion games. We first explore the impact of symmetry on the worst-case PoA of network congestion games. For polynomial delay functions with highest degree p, we construct a family of symmetric congestion games over arbitrary networks which achieves the same worst-case PoA of … Read more