On parametric formulations for the Asymmetric Traveling Salesman Problem

The traveling salesman problem is a widely studied classical combinatorial problem for which there are several integer linear formulations. In this work, we consider the Miller-Tucker-Zemlin (MTZ), Desrochers-Laporte (DL) and Single Commodity Flow (SCF) formulations. We argue that the choice of some parameters of these formulations is arbitrary and, therefore, there are families of formulations … Read more

Single-Scenario Facet Preservation for Stochastic Mixed-Integer Programs

We consider improving the polyhedral representation of the extensive form of a stochastic mixed-integer program (SMIP). Given a facet for a single-scenario version of an SMIP, our main result provides necessary and sufficient conditions under which this inequality remains facet-defining for the extensive form. We then present several implications, which show that common recourse structures … Read more

Extended Formulations for Control Languages Defined by Finite-State Automata

Many discrete optimal control problems feature combinatorial constraints on the possible switching patterns, a common example being minimum dwell-time constraints. After discretizing to a finite time grid, for these and many similar types of constraints, it is possible to give a description of the convex hull of feasible (finite-dimensional) binary controls via extended formulations. In … Read more

The Bipartite Implication Polytope: Conditional Relations over Multiple Sets of Binary Variables

Inspired by its occurrence as a substructure in a stochastic railway timetabling model, we study in this work a special case of the bipartite boolean quadric polytope. It models conditional relations across three sets of binary variables, where selections within two implying sets imply a choice in a corresponding implied set. We call this polytope … Read more

Cuts and semidefinite liftings for the complex cut polytope

We consider the complex cut polytope: the convex hull of Hermitian rank 1 matrices \(xx^{\mathrm{H}}\), where the elements of \(x \in \mathbb{C}^n\) are \(m\)th unit roots. These polytopes have applications in \({\text{MAX-3-CUT}}\), digital communication technology, angular synchronization and more generally, complex quadratic programming. For \({m=2}\), the complex cut polytope corresponds to the well-known cut polytope. … Read more

On the power of linear programming for K-means clustering

In a previous work, we introduced a new linear programming (LP) relaxation for K-means clustering. In this paper, we further investigate the theoretical properties of this relaxation. We focus on K-means clustering with two clusters, which is an NP-hard problem. As evident from our numerical experiments with both synthetic and real-world data sets, the proposed … Read more

A proof for multilinear error bounds

We derive the error bounds for multilinear terms in $[0,1]^n$ using a proof methodology based on the polyhedral representation of the convex hull. We extend the result for multilinear terms in $[\boldsymbol{L},\boldsymbol{0}] \times [\boldsymbol{0},\boldsymbol{U}]\subset\mathbb{R}^n$. ArticleDownload View PDF

On Rank-Monotone Graph Operations and Minimal Obstruction Graphs for the Lovász-Schrijver SDP Hierarchy

We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator LS_+, with a particular focus on finding and characterizing the smallest graphs with a given LS_+-rank (the least number of iterations of the LS_+ operator on the fractional stable set polytope to compute the stable set … Read more

Facets of the knapsack polytope from non-minimal covers

We propose two new classes of valid inequalities (VIs) for the binary knapsack polytope, based on non-minimal covers. We also show that these VIs can be obtained through neither sequential nor simultaneous lifting of well-known cover inequalities. We further provide conditions under which they are facet-defining. The usefulness of these VIs is demonstrated using computational … Read more

Relaxation strength for multilinear optimization: McCormick strikes back

We consider linear relaxations for multilinear optimization problems. In a recent paper, Khajavirad proved that the extended flower relaxation is at least as strong as the relaxation of any recursive McCormick linearization (Operations Research Letters 51 (2023) 146-152). In this paper we extend the result to more general linearizations, and present a simpler proof. Moreover, … Read more