On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems

We consider the semi-infinite system of polynomial inequalities of the form \[ \mathbf{K}:=\{x\in\mathbb{R}^m\mid p(x,y)\ge 0,\ \ \forall y\in S\subseteq\mathbb{R}^n\}, \] where $p(X,Y)$ is a real polynomial in the variables $X$ and the parameters $Y$, the index set $S$ is a basic semialgebraic set in $\mathbb{R}^n$, $-p(X,y)$ is convex in $X$ for every $y\in S$. We … Read more

Volumetric barrier decomposition algorithms for two-stage stochastic linear semi-infinite programming

In this paper, we study the two-stage stochastic linear semi-infinite programming with recourse to handle uncertainty in data defining (deterministic) linear semi-infinite programming. We develop and analyze volumetric barrier decomposition-based interior point methods for solving this class of optimization problems, and present a complexity analysis of the proposed algorithms. We establish our convergence analysis by … Read more

Dynamic Optimization with Convergence Guarantees

We present a novel direct transcription method to solve optimization problems subject to nonlinear differential and inequality constraints. In order to provide numerical convergence guarantees, it is sufficient for the functions that define the problem to satisfy boundedness and Lipschitz conditions. Our assumptions are the most general to date; we do not require uniqueness, differentiability … Read more

An oracle-based projection and rescaling algorithm for linear semi-infinite feasibility problems and its application to SDP and SOCP

We point out that Chubanov’s oracle-based algorithm for linear programming [5] can be applied almost as it is to linear semi-infinite programming (LSIP). In this note, we describe the details and prove the polynomial complexity of the algorithm based on the real computation model proposed by Blum, Shub and Smale (the BSS model) which is … Read more

Time-Varying Semidefinite Programs

We study time-varying semidefinite programs (TV-SDPs), which are semidefinite programs whose data (and solutions) are functions of time. Our focus is on the setting where the data varies polynomially with time. We show that under a strict feasibility assumption, restricting the solutions to also be polynomial functions of time does not change the optimal value … Read more

Robust-to-Dynamics Optimization

A robust-to-dynamics optimization (RDO) problem} is an optimization problem specified by two pieces of input: (i) a mathematical program (an objective function $f:\mathbb{R}^n\rightarrow\mathbb{R}$ and a feasible set $\Omega\subseteq\mathbb{R}^n$), and (ii) a dynamical system (a map $g:\mathbb{R}^n\rightarrow\mathbb{R}^n$). Its goal is to minimize $f$ over the set $\mathcal{S}\subseteq\Omega$ of initial conditions that forever remain in $\Omega$ under … Read more

Moments and convex optimization for analysis and control of nonlinear partial differential equations

This work presents a convex-optimization-based framework for analysis and control of nonlinear partial differential equations. The approach uses a particular weak embedding of the nonlinear PDE, resulting in a \emph{linear} equation in the space of Borel measures. This equation is then used as a constraint of an infinite-dimensional linear programming problem (LP). This LP is … Read more

Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints

Discretization-based algorithms are proposed for the global solution of mixed-integer nonlinear generalized semi-infinite (GSIP) and bilevel (BLP) programs with lower-level equality constraints coupling the lower and upper level. The algorithms are extensions, respectively, of the algorithm proposed by Mitsos and Tsoukalas (J Glob Optim 61(1):1–17, 2015. https://doi.org/10.1007/s10898-014-0146-6) and by Mitsos (J Glob Optim 47(4):557–582, 2010. … Read more

A transformation-based discretization method for solving general semi-infinite optimization problems

Discretization methods are commonly used for solving standard semi-infinite optimization (SIP) problems. The transfer of these methods to the case of general semi-infinite optimization (GSIP) problems is difficult due to the $x$-dependence of the infinite index set. On the other hand, under suitable conditions, a GSIP problem can be transformed into a SIP problem. In … Read more

Balancing Communication and Computation in Distributed Optimization

Methods for distributed optimization have received significant attention in recent years owing to their wide applicability in various domains including machine learning, robotics and sensor networks. A distributed optimization method typically consists of two key components: communication and computation. More specifically, at every iteration (or every several iterations) of a distributed algorithm, each node in … Read more