Remark on multi-target,robust linear-quadratic control problem on semi-infinite interval

We consider multi-target,robust linear-quadratic control problem on semi-infinite interval. Using functional-analytic approach developed in [2], we reduce this problem to a convex optimization problem on the simplex. Explicit procedure for the reduced optimization problem is described. CitationPreprint, University of Notre Dame, August,2015ArticleDownload View PDF

Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators

We investigate the asymptotic behavior of a stochastic version of the forward-backward splitting algorithm for finding a zero of the sum of a maximally monotone set-valued operator and a cocoercive operator in Hilbert spaces. Our general setting features stochastic approximations of the cocoercive operator and stochastic perturbations in the evaluation of the resolvents of the … Read more

Asynchronous Block-Iterative Primal-Dual Decomposition Methods for Monotone Inclusions

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in … Read more

Bridging the Gap Between Multigrid, Hierarchical, and Receding-Horizon Control

We analyze the structure of the Euler-Lagrange conditions of a lifted long-horizon optimal control problem. The analysis reveals that the conditions can be solved by using block Gauss-Seidel schemes and we prove that such schemes can be implemented by solving sequences of short-horizon problems. The analysis also reveals that a receding-horizon control scheme is equivalent … Read more

Solving disjunctive optimization problems by generalized semi-infinite optimization techniques

We describe a new possibility to model disjunctive optimization problems as generalized semi-infinite programs. In contrast to existing methods, for our approach neither a conjunctive nor a disjunctive normal form is expected. Applying existing lower level reformulations for the corresponding semi-infinite program we derive conjunctive nonlinear problems without any logical expressions, which can be locally … Read more

Set approach for set optimization with variable ordering structures

This paper aims at combining variable ordering structures with set relations in set optimization, which have been defined using the constant ordering cone before. Since the purpose is to connect these two important approaches in set optimization, we do not restrict our considerations to one certain relation. Conversely, we provide the reader with many new … Read more

Simplex Algorithm for Countable-state Discounted Markov Decision Processes

We consider discounted Markov Decision Processes (MDPs) with countably-infinite state spaces, finite action spaces, and unbounded rewards. Typical examples of such MDPs are inventory management and queueing control problems in which there is no specific limit on the size of inventory or queue. Existing solution methods obtain a sequence of policies that converges to optimality … Read more

Nonlinear local error bounds via a change of metric

In this work, we improve the approach of Corvellec-Motreanu to nonlinear error bounds for lowersemicontinuous functions on complete metric spaces, an approach consisting in reducing the nonlinear case to the linear one through a change of metric. This improvement is basically a technical one, and allows dealing with local error bounds in an appropriate way. … Read more

A collision detection approach for maximizing the material utilization

We introduce a new method for a task of maximal material utilization, which is is to fit a flexible, scalable three-dimensional body into another aiming for maximal volume whereas position and shape may vary. The difficulty arises from the containment constraint which is not easy to handle numerically. We use a collision detection method to … Read more

Linear conic optimization for nonlinear optimal control

Infinite-dimensional linear conic formulations are described for nonlinear optimal control problems. The primal linear problem consists of finding occupation measures supported on optimal relaxed controlled trajectories, whereas the dual linear problem consists of finding the largest lower bound on the value function of the optimal control problem. Various approximation results relating the original optimal control … Read more