Bridging the Gap Between Multigrid, Hierarchical, and Receding-Horizon Control

We analyze the structure of the Euler-Lagrange conditions of a lifted long-horizon optimal control problem. The analysis reveals that the conditions can be solved by using block Gauss-Seidel schemes and we prove that such schemes can be implemented by solving sequences of short-horizon problems. The analysis also reveals that a receding-horizon control scheme is equivalent … Read more

Solving disjunctive optimization problems by generalized semi-infinite optimization techniques

We describe a new possibility to model disjunctive optimization problems as generalized semi-infinite programs. In contrast to existing methods, for our approach neither a conjunctive nor a disjunctive normal form is expected. Applying existing lower level reformulations for the corresponding semi-infinite program we derive conjunctive nonlinear problems without any logical expressions, which can be locally … Read more

Set approach for set optimization with variable ordering structures

This paper aims at combining variable ordering structures with set relations in set optimization, which have been defined using the constant ordering cone before. Since the purpose is to connect these two important approaches in set optimization, we do not restrict our considerations to one certain relation. Conversely, we provide the reader with many new … Read more

Simplex Algorithm for Countable-state Discounted Markov Decision Processes

We consider discounted Markov Decision Processes (MDPs) with countably-infinite state spaces, finite action spaces, and unbounded rewards. Typical examples of such MDPs are inventory management and queueing control problems in which there is no specific limit on the size of inventory or queue. Existing solution methods obtain a sequence of policies that converges to optimality … Read more

Nonlinear local error bounds via a change of metric

In this work, we improve the approach of Corvellec-Motreanu to nonlinear error bounds for lowersemicontinuous functions on complete metric spaces, an approach consisting in reducing the nonlinear case to the linear one through a change of metric. This improvement is basically a technical one, and allows dealing with local error bounds in an appropriate way. … Read more

A collision detection approach for maximizing the material utilization

We introduce a new method for a task of maximal material utilization, which is is to fit a flexible, scalable three-dimensional body into another aiming for maximal volume whereas position and shape may vary. The difficulty arises from the containment constraint which is not easy to handle numerically. We use a collision detection method to … Read more

Linear conic optimization for nonlinear optimal control

Infinite-dimensional linear conic formulations are described for nonlinear optimal control problems. The primal linear problem consists of finding occupation measures supported on optimal relaxed controlled trajectories, whereas the dual linear problem consists of finding the largest lower bound on the value function of the optimal control problem. Various approximation results relating the original optimal control … Read more

Modal occupation measures and LMI relaxations for nonlinear switched systems control

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of Hamilton-Jacobi-Bellman inequalities is also characterized. The LPs … Read more

The Slater Conundrum: Duality and Pricing in Infinite Dimensional Optimization

Duality theory is pervasive in finite dimensional optimization. There is growing interest in solving infinite-dimensional optimization problems and hence a corresponding interest in duality theory in infinite dimensions. Unfortunately, many of the intuitions and interpretations common to finite dimensions do not extend to infinite dimensions. In finite dimensions, a dual solution is represented by a … Read more

On Calmness of the Argmin Mapping in Parametric Optimization Problems

Recently, Canovas et. al. (2013) presented an interesting result: the argmin mapping of a linear semi-infinite program under canonical perturbations is calm if and only if some associated linear semi-infinite inequality system is calm. Using classical tools from parametric optimization, we show that the if-direction of this condition holds in a much more general framework … Read more