discrete location models with customers’ choice and path improvements

We examine several facility location problems within a directed network involving two distinct cost types. The first, referred to as the customer cost, represents the expense each customer considers when selecting a facility to obtain service (e.g., delivery time or a measure of quality degradation). Consequently, once facilities are established, each customer chooses the one … Read more

A two-stage stochastic programming approach incorporating spatially-explicit fire scenarios for optimal firebreak placement

Ensuring the effective placement of firebreaks across the landscape is a critical issue in wildfire prevention, as their success relies on their ability to block the spread of future fires. To address this challenge, it is essential to recognize the stochastic nature of fires, which are highly unpredictable from start to finish. The issue is … Read more

Facets of the knapsack polytope from non-minimal covers

We propose two new classes of valid inequalities (VIs) for the binary knapsack polytope, based on non-minimal covers. We also show that these VIs can be obtained through neither sequential nor simultaneous lifting of well-known cover inequalities. We further provide conditions under which they are facet-defining. The usefulness of these VIs is demonstrated using computational … Read more

Relaxation strength for multilinear optimization: McCormick strikes back

We consider linear relaxations for multilinear optimization problems. In a recent paper, Khajavirad proved that the extended flower relaxation is at least as strong as the relaxation of any recursive McCormick linearization (Operations Research Letters 51 (2023) 146-152). In this paper we extend the result to more general linearizations, and present a simpler proof. Moreover, … Read more

Combining Precision Boosting with LP Iterative Refinement for Exact Linear Optimization

This article studies a combination of the two state-of-the-art algorithms for the exact solution of linear programs (LPs) over the rational numbers, i.e., without any roundoff errors or numerical tolerances. By integrating the method of precision boosting inside an LP iterative refinement loop, the combined algorithm is able to leverage the strengths of both methods: … Read more

Cross-Dock Trailer Scheduling with Workforce Constraints: A Dynamic Discretization Discovery Approach

LTL freight carriers operate consolidation networks that utilize cross-docking terminals to facilitate thetransfer of freight between trailers and enhance trailer utilization. This research addresses the problem ofdetermining an optimal schedule for unloading inbound trailers at specific unloading doors using teams ofdock workers. The optimization objective is chosen to ensure that outbound trailers are loaded with … Read more

A proof system for certifying symmetry and optimality reasoning in integer programming

We present a proof system for establishing the correctness of results produced by optimization algorithms, with a focus on mixed-integer programming (MIP). Our system generalizes the seminal work of Bogaerts, Gocht, McCreesh, and Nordström (2022) for binary programs to handle any additional difficulties arising from unbounded and continuous variables, and covers a broad range of … Read more

Strategy Investments in Matrix Games

We propose an extension of matrix games where the row player may select rows and remove columns, subject to a budget constraint. We present an exact mixed-integer linear programming (MILP) formulation for the problem, provide analytical results concerning its solution, and discuss applications in the security domain. Our computational experiments show heuristic approaches on average … Read more

Exact and Heuristic Solution Approaches for Busy Time Minimization in Temporal Bin Packing

Given a set of jobs (or items), each of which being characterized by its resource demand and its lifespan, and a sufficiently large number of identical servers (or bins), the busy time minimization problem (BTMP) requires to find a feasible schedule (i.e., a jobs-to-servers assignment) having minimum overall power-on time. Although being linked to the … Read more

Learning Optimal Classification Trees Robust to Distribution Shifts

We consider the problem of learning classification trees that are robust to distribution shifts between training and testing/deployment data. This problem arises frequently in high stakes settings such as public health and social work where data is often collected using self-reported surveys which are highly sensitive to e.g., the framing of the questions, the time … Read more