The Prime Programming Problem: Formulations and Solution Methods

We introduce the prime programming problem as a subclass of integer programming. These optimization models impose the restriction of feasible solutions being prime numbers. Then, we demonstrate how several classical problems in number theory can be formulated as prime programs. To solve such problems with a commercial optimization solver, we extend the branch-and-bound procedure of … Read more

Randomized Roundings for a Mixed-Integer Elliptic Control System

\(\) We present randomized reconstruction approaches for optimal solutions to mixed-integer elliptic PDE control systems. Approximation properties and relations to sum-up rounding are derived using the cut norm. This enables us to dispose of space-filling curves required for sum-up rounding. Rates of almost sure convergence in the cut norm and the SUR norm in control … Read more

Optimizing with Column Generation: Advanced Branch-Cut-and-Price Algorithms (Part I)

We are excited to present the early release of Part I of our book “Optimizing with Column Generation: advanced Branch-Cut-and-Price Algorithms”. While the book’s ultimate goal, as suggested by its subtitle, is to describe cutting-edge techniques in these algorithms, this objective is primarily addressed in the forthcoming Part II. However, we feel that the completed … Read more

Cover-based inequalities for the single-source capacitated facility location problem with customer preferences

The single-source capacitated facility location problem with customer preferences (SSCFLPCP) is known to be strongly NP-hard and computational tests imply that state-of-the-art solvers struggle with computing exact solutions. In this paper, we contribute two novel preprocessing methods, which reduce the size of the considered integer programming formulation, and introduce sets of valid inequalities, which decrease the … Read more

Equity-promoting Integer Programming Approaches For Medical Resident Rotation Scheduling

Motivated by our collaboration with a residency program at an academic health system, we propose new integer programming (IP) approaches for the resident-to-rotation assignment problem (RRAP). Given sets of residents, resident classes, and departments, as well as a block structure for each class, staffing needs, rotation requirements for each class, program rules, and resident vacation … Read more

Models for two-dimensional bin packing problems with customer order spread

In this paper, we address an extension of the classical two-dimensional bin packing (2BPP) that considers the spread of customer orders (2BPP-OS). The 2BPP-OS addresses a set of rectangular items, required from different customer orders, to be cut from a set of rectangular bins. All the items of a customer order are dispatched together to … Read more

A Row-wise Algorithm for Graph Realization

\(\) Given a \(\{0,1\}\)-matrix \(M\), the graph realization problem for \(M\) asks if there exists a spanning forest such that the columns of \(M\) are incidence vectors of paths in the forest. The problem is closely related to the recognition of network matrices, which are a large subclass of totally unimodular matrices and have many … Read more

An Asymptotically Optimal Coordinate Descent Algorithm for Learning Bayesian Networks from Gaussian Models

\(\) This paper studies the problem of learning Bayesian networks from continuous observational data, generated according to a linear Gaussian structural equation model. We consider an \(\ell_0\)-penalized maximum likelihood estimator for this problem which is known to have favorable statistical properties but is computationally challenging to solve, especially for medium-sized Bayesian networks. We propose a … Read more

Machine Learning for Optimization-Based Separation: the Case of Mixed-Integer Rounding Cuts

Mixed-Integer Rounding (MIR) cuts are effective at improving the dual bound in Mixed-Integer Linear Programming (MIP). However, in practice, MIR cuts are separated heuristically rather than using optimization as the latter is prohibitively expensive. We present a hybrid cut generation framework in which we train a Machine Learning (ML) model to inform cut generation for … Read more

Optimizing the lead time of operational flexibility trading from distributed industrial energy systems in future energy and flexibility markets

To meet the challenges of increasing volatile and distributed renewable energy generation in the electric grid, local flexibility and energy markets are currently investigated. These markets aim to encourage prosumers to trade their available flexible power locally, to be used if a grid congestion is being predicted. The markets are emerging, but the characterizing parameter … Read more