Bi-Parameterized Two-Stage Stochastic Min-Max and Min-Min Mixed Integer Programs

We introduce two-stage stochastic min-max and min-min integer programs with bi-parameterized recourse (BTSPs), where the first-stage decisions affect both the objective function and the feasible region of the second-stage problem. To solve these programs efficiently, we introduce Lagrangian-integrated L-shaped (\(L^2\)) methods, which guarantee exact solutions when the first-stage decisions are pure binary. For mixed-binary first-stage … Read more

Proximity results in convex mixed-integer programming

We study proximity (resp. integrality gap), that is, the distance (resp. difference) between the optimal solutions (resp. optimal values) of convex integer programs (IP) and the optimal solutions (resp. optimal values) of their continuous relaxations. We show that these values can be upper bounded in terms of the recession cone of the feasible region of … Read more

The Edge-based Contiguous p-median Problem with Connections to Logistics Districting

This paper introduces the edge-based contiguous p-median (ECpM) problem to partition the roads in a network into a given number of compact and contiguous territories. Two binary programming models are introduced, both of which incorporate a network distance. The first model requires an exponential number of cut set-based constraints to model contiguity; it is paired … Read more

Solving Multi-Follower Mixed-Integer Bilevel Problems with Binary Linking Variables

We study multi-follower bilevel optimization problems with binary linking variables where the second level consists of many independent integer-constrained subproblems. This problem class not only generalizes many classical interdiction problems but also arises naturally in many network design problems where the second-level subproblems involve complex routing decisions of the actors involved. We propose a novel … Read more

Polynomial-Time Algorithms for Setting Tight Big-M Coefficients in Transmission Expansion Planning with Disconnected Buses

The increasing penetration of renewable energy into power systems necessitates the development of effective methodologies to integrate initially disconnected generation sources into the grid. This paper introduces the Longest Shortest-Path-Connection (LSPC) algorithm, a graph-based method to enhance the mixed-integer linear programming disjunctive formulation of Transmission Expansion Planning (TEP) using valid inequalities (VIs). Traditional approaches for … Read more

Neural Embedded Mixed-Integer Optimization for Location-Routing Problems

We present a novel framework that combines machine learning with mixed-integer optimization to solve the Capacitated Location-Routing Problem (CLRP). The CLRP is a classical yet NP-hard problem that integrates strategic facility location with operational vehicle routing decisions, aiming to simultaneously minimize both fixed and variable costs. The proposed method first trains a permutationally invariant neural … Read more

Mixed-Integer Bilevel Optimization with Nonconvex Quadratic Lower-Level Problems: Complexity and a Solution Method

We study bilevel problems with a convex quadratic mixed-integer upper-level, integer linking variables, and a nonconvex quadratic, purely continuous lower-level problem. We prove $\Sigma_p^2$-hardness of this class of problems, derive an iterative lower- and upper-bounding scheme, and show its finiteness and correctness in the sense that it computes globally optimal points or proves infeasibility of … Read more

On parametric formulations for the Asymmetric Traveling Salesman Problem

The traveling salesman problem is a widely studied classical combinatorial problem for which there are several integer linear formulations. In this work, we consider the Miller-Tucker-Zemlin (MTZ), Desrochers-Laporte (DL) and Single Commodity Flow (SCF) formulations. We argue that the choice of some parameters of these formulations is arbitrary and, therefore, there are families of formulations … Read more

An Efficient Algorithm to the Integrated Shift and Task Scheduling Problem

Abstract   This paper deals with operational models for integrated shift and task scheduling problem. Staff scheduling problem is a special case of this with staff requirements as given input to the problem. Both problems become hard to solve when the problems are considered with flexible shifts. Current literature on these problems leaves good scope … Read more

Approximating the Gomory Mixed-Integer Cut Closure Using Historical Data

Many operations related optimization problems involve repeatedly solving similar mixed integer linear programming (MILP) instances with the same constraint matrix but differing objective coefficients and right-hand-side values. The goal of this paper is to generate good cutting-planes for such instances using historical data. Gomory mixed integer cuts (GMIC) for a general MILP can be parameterized … Read more