Goldstein Stationarity in Lipschitz Constrained Optimization

We prove the first convergence guarantees for a subgradient method minimizing a generic Lipschitz function over generic Lipschitz inequality constraints. No smoothness or convexity (or weak convexity) assumptions are made. Instead, we utilize a sequence of recent advances in Lipschitz unconstrained minimization, which showed convergence rates of $O(1/\delta\epsilon^3)$ towards reaching a “Goldstein” stationary point, that … Read more

Analysis of a Class of Minimization Problems Lacking Lower Semicontinuity

The minimization of non-lower semicontinuous functions is a difficult topic that has been minimally studied. Among such functions is a Heaviside composite function that is the composition of a Heaviside function with a possibly nonsmooth multivariate function. Unifying a statistical estimation problem with hierarchical selection of variables and a sample average approximation of composite chance … Read more

On achieving strong necessary second-order properties in nonlinear programming

Second-order necessary or sufficient optimality conditions for nonlinear programming are usually defined by means of the positive (semi-)definiteness of a quadratic form, or a maximum of quadratic forms, over the critical cone. However, algorithms for finding such second-order stationary points are currently unknown. Typically, an algorithm with a second-order property approximates a primal-dual point such … Read more

Full-low evaluation methods for bound and linearly constrained derivative-free optimization

Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides … Read more

Eigenvalue programming beyond matrices

In this paper we analyze and solve eigenvalue programs, which consist of the task of minimizing a function subject to constraints on the “eigenvalues” of the decision variable. Here, by making use of the FTvN systems framework introduced by Gowda, we interpret “eigenvalues” in a broad fashion going beyond the usual eigenvalues of matrices. This … Read more

Cone product reformulation for global optimization

In this paper, we study nonconvex optimization problems involving sum of linear times convex (SLC) functions as well as conic constraints belonging to one of the five basic cones, that is, linear cone, second order cone, power cone, exponential cone, and semidefinite cone. By using the Reformulation Perspectification Technique, we can obtain a convex relaxation … Read more

Range of the displacement operator of PDHG with applications to quadratic and conic programming

Primal-dual hybrid gradient (PDHG) is a first-order method for saddle-point problems and convex programming introduced by Chambolle and Pock. Recently, Applegate et al. analyzed the behavior of PDHG when applied to an infeasible or unbounded instance of linear programming, and in particular, showed that PDHG is able to diagnose these conditions. Their analysis hinges on … Read more

A Criterion Space Search Feasibility Pump Heuristic for Solving Maximum Multiplicative Programs

We study a class of nonlinear optimization problems with diverse practical applications, particularly in cooperative game theory. These problems are referred to as Maximum Multiplicative Programs (MMPs), and can be conceived as instances of “Optimization Over the Frontier” in multiobjective optimization. To solve MMPs, we introduce a feasibility pump-based heuristic that is specifically designed to … Read more

Accelerated Gradient Descent via Long Steps

Recently Grimmer [1] showed for smooth convex optimization by utilizing longer steps periodically, gradient descent’s state-of-the-art O(1/T) convergence guarantees can be improved by constant factors, conjecturing an accelerated rate strictly faster than O(1/T) could be possible. Here we prove such a big-O gain, establishing gradient descent’s first accelerated convergence rate in this setting. Namely, we … Read more

Using orthogonally structured positive bases for constructing positive k-spanning sets with cosine measure guarantees

Positive spanning sets span a given vector space by nonnegative linear combinations of their elements. These have attracted significant attention in recent years, owing to their extensive use in derivative-free optimization. In this setting, the quality of a positive spanning set is assessed through its cosine measure, a geometric quantity that expresses how well such … Read more