A Simple First-Order Algorithm for Full-Rank Equality Constrained Optimization

A very simple first-order algorithm is proposed for solving nonlinear optimization problems with deterministic nonlinear equality constraints. This algorithm adaptively selects steps in the plane tangent to the constraints or steps that reduce infeasibility, without using a merit function or a filter. The tangent steps are based on the AdaGrad method for unconstrained minimization. The … Read more

Optimization in Theory and Practice

Algorithms for continuous optimization problems have a rich history of design and innovation over the past several decades, in which mathematical analysis of their convergence and complexity properties plays a central role. Besides their theoretical properties, optimization algorithms are interesting also for their practical usefulness as computational tools for solving real-world problems. There are often … Read more

Adaptive Conditional Gradient Descent

Selecting an effective step-size is a fundamental challenge in first-order optimization, especially for problems with non-Euclidean geometries. This paper presents a novel adaptive step-size strategy for optimization algorithms that rely on linear minimization oracles, as used in the Conditional Gradient or non-Euclidean Normalized Steepest Descent algorithms. Using a simple heuristic to estimate a local Lipschitz … Read more

Towards robust optimal control of chromatographic separation processes with controlled flow reversal

Column liquid chromatography is an important technique applied in the production of biopharmaceuticals, specifically for the separation of biological macromolecules such as proteins. When setting up process conditions, it is crucial that the purity of the product is sufficiently high, even in the presence of perturbations in the process conditions, e.g., altered buffer salt concentrations. … Read more

On the Complexity of Lower-Order Implementations of Higher-Order Methods

In this work, we propose a method for minimizing non-convex functions with Lipschitz continuous \(p\)th-order derivatives, starting from \(p \geq 1\). The method, however, only requires derivative information up to order \((p-1)\), since the \(p\)th-order derivatives are approximated via finite differences. To ensure oracle efficiency, instead of computing finite-difference approximations at every iteration, we reuse … Read more

A Simple Adaptive Proximal Gradient Method for Nonconvex Optimization

Consider composite nonconvex optimization problems where the objective function consists of a smooth nonconvex term (with Lipschitz-continuous gradient) and a convex (possibly nonsmooth) term. Existing parameter-free methods for such problems often rely on complex multi-loop structures, require line searches, or depend on restrictive assumptions (e.g., bounded iterates). To address these limitations, we introduce a novel … Read more

MadNCL: A GPU Implementation of Algorithm NCL for Large-Scale, Degenerate Nonlinear Programs

We present a GPU implementation of Algorithm NCL, an augmented Lagrangian method for solving large-scale and degenerate nonlinear programs. Although interior-point methods and sequential quadratic programming are widely used for solving nonlinear programs, the augmented Lagrangian method is known to offer superior robustness against constraint degeneracies and can rapidly detect infeasibility. We introduce several enhancements … Read more

Continuous-time Analysis of a Stochastic ADMM Method for Nonconvex Composite Optimization

In this paper, we focus on nonconvex composite optimization, whose objective is the sum of a smooth but possibly nonconvex function and a composition of a weakly convex function coupled with a linear operator. By leveraging a smoothing technique based on Moreau envelope, we propose a stochastic proximal linearized ADMM algorithm (SPLA). To understand its … Read more