Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints

We propose a framework for modeling and solving low-rank optimization problems to certifiable optimality. We introduce symmetric projection matrices that satisfy $Y^2 = Y$, the matrix analog of binary variables that satisfy $z^2 = z$, to model rank constraints. By leveraging regularization and strong duality, we prove that this modeling paradigm yields tractable convex optimization … Read more

A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming

The focus in this work is interior-point methods for quadratic optimization problems with linear inequality constraints where the system of nonlinear equations that arise are solved with Newton-like methods. In particular, the concern is the system of linear equations to be solved at each iteration. Newton systems give high quality solutions but there is an … Read more

Spectral Residual Method for Nonlinear Equations on Riemannian Manifolds

In this paper, the spectral algorithm for nonlinear equations (SANE) is adapted to the problem of finding a zero of a given tangent vector field on a Riemannian manifold. The generalized version of SANE uses, in a systematic way, the tangent vector field as a search direction and a continuous real–valued function that adapts this … Read more

Using first-order information in Direct Multisearch for multiobjective optimization

Derivatives are an important tool for single-objective optimization. In fact, it is commonly accepted that derivative-based methods present a better performance than derivative-free optimization approaches. In this work, we will show that the same does not apply to multiobjective derivative-based optimization, when the goal is to compute an approximation to the complete Pareto front of … Read more

Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach

Motivated by applications in machine learning and operations research, we study regret minimization with stochastic first-order oracle feedback in online constrained, and possibly non-smooth, non-convex problems. In this setting, the minimization of external regret is beyond reach, so we focus on a local regret measures defined via a proximal-gradient residual mapping. To achieve no (local) … Read more

Economic inexact restoration for derivative-free expensive function minimization and applications

The Inexact Restoration approach has proved to be an adequate tool for handling the problem of minimizing an expensive function within an arbitrary feasible set by using different degrees of precision in the objective function. The Inexact Restoration framework allows one to obtain suitable convergence and complexity results for an approach that rationally combines low- … Read more

Constrained global optimization of functions with low effective dimensionality using multiple random embeddings

We consider the bound-constrained global optimization of functions with low effective dimensionality, that are constant along an (unknown) linear subspace and only vary over the effective (complement) subspace. We aim to implicitly explore the intrinsic low dimensionality of the constrained landscape using feasible random embeddings, in order to understand and improve the scalability of algorithms … Read more

Inexact Variable Metric Method for Convex-Constrained Optimization Problems

This paper is concerned with the inexact variable metric method for solving convex-constrained optimization problems. At each iteration of this method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, … Read more

Largest small polygons: A sequential convex optimization approach

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m\ge 7$. Finding the largest small $n$-gon for a given number $n\ge 3$ can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a … Read more

Dual Randomized Coordinate Descent Method for Solving a Class of Nonconvex Problems

We consider a nonconvex optimization problem consisting of maximizing the difference of two convex functions. We present a randomized method that requires low computational effort at each iteration. The described method is a randomized coordinate descent method employed on the so-called Toland-dual problem. We prove subsequence convergence to dual stationarity points, a new notion that … Read more