Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization

Abstract. We consider the Adaptive Regularization with Cubics approach for solving nonconvex optimization problems and propose a new variant based on inexact Hessian information chosen dynamically. The theoretical analysis of the proposed procedure is given. The key property of ARC framework, constituted by optimal worst-case function/derivative evaluation bounds for first- and second-order critical point, is … Read more

Alternative DC Algorithm for Partial DC programming

In this paper, we introduce an alternative DC algorithm for solving partial DC programs. This proposed algorithm is an natural extension of the standard DC algorithm. Furthermore, we also consider an inexact version of this alternative DC algorithm. The convergence of these proposed algorithms (both the exact and inexact versions) are investigated. The applications to … Read more

Spectral properties of Barzilai-Borwein rules in solving singly linearly constrained optimization problems subject to lower and upper bounds

In 1988, Barzilai and Borwein published a pioneering paper which opened the way to inexpensively accelerate first-order methods. More in detail, in the framework of unconstrained optimization, Barzilai and Borwein developed two strategies to select the steplength in gradient descent methods with the aim of encoding some second-order information of the problem without computing and/or … Read more

On the Complexity of an Augmented Lagrangian Method for Nonconvex Optimization

In this paper we study the worst-case complexity of an inexact Augmented Lagrangian method for nonconvex constrained problems. Assuming that the penalty parameters are bounded, we prove a complexity bound of $\mathcal{O}(|\log(\epsilon)|)$ outer iterations for the referred algorithm to generate an $\epsilon$-approximate KKT point, for $\epsilon\in (0,1)$. When the penalty parameters are unbounded, we prove … Read more

An accelerated inexact proximal point method for solving nonconvex-concave min-max problems

Abstract This paper presents a quadratic-penalty type method for solving linearly-constrained composite nonconvex-concave min-max problems. The method consists of solving a sequence of penalty subproblems which, due to the min-max structure of the problem, are potentially nonsmooth but can be approximated by smooth composite nonconvex minimization problems. Each of these penalty subproblems is then solved … Read more

Hybrid Stochastic Gradient Descent Algorithms forStochastic Nonconvex Optimization

We introduce a hybrid stochastic estimator to design stochastic gradient algorithms for solving stochastic optimization problems. Such a hybrid estimator is a convex combination of two existing biased and unbiased estimators and leads to some useful property on its variance. We limit our consideration to a hybrid SARAH-SGD for nonconvex expectation problems. However, our idea … Read more

Multiphase Mixed-Integer Nonlinear Optimal Control of Hybrid Electric Vehicles

This paper considers the problem of computing the non-causal minimum-fuel energy management strategy of a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem arising when optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by … Read more

Using interior point solvers for optimizing progressive lens models with spherical coordinates

Designing progressive lenses is a complex problem that has been previously solved by formulating an optimization model based on Cartesian coordinates. In this work a new progressive lens model using spherical coordinates is presented, and interior point solvers are used to solve this new optimization model. Although this results in a highly nonlinear, nonconvex, continuous … Read more

Hybrid methods for nonlinear least squares problems

This contribution contains a description and analysis of effective methods for minimization of the nonlinear least squares function $F(x) = (1/2) f^T(x) f(x)$, where $x \in R^n$ and $f \in R^m$, together with extensive computational tests and comparisons of the introduced methods. All hybrid methods are described in detail and their global convergence is proved … Read more

Numerical solution of generalized minimax problems

This contribution contains the description and investigation of four numerical methods for solving generalized minimax problems, which consists in the minimization of functions which are compositions of special smooth convex functions with maxima of smooth functions (the most important problem of this type is the sum of maxima of smooth functions). Section~1 is introductory. In … Read more