A switching cost aware rounding method for relaxations of mixed-integer optimal control problems

This article investigates a class of Mixed-Integer Optimal Control Problems (MIOCPs) with switching costs. We introduce the problem class of Minimal-Switching-Cost Optimal Control Problems (MSCP) with an objective function that consists of two summands, a continuous term depending on the state vector and an encoding of the discrete switching costs. State vectors of Mixed-Integer Optimal … Read more

Minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity

An adaptive regularization algorithm using inexact function and derivatives evaluations is proposed for the solution of composite nonsmooth nonconvex optimization. It is shown that this algorithm needs at most O(|log(epsilon)|.epsilon^{-2}) evaluations of the problem’s functions and their derivatives for finding an $\epsilon$-approximate first-order stationary point. This complexity bound therefore generalizes that provided by [Bellavia, Gurioli, … Read more

High-Order Evaluation Complexity for Convexly-Constrained Optimization with Non-Lipschitzian Group Sparsity Terms

This paper studies high-order evaluation complexity for partially separable convexly-constrained optimization involving non-Lipschitzian group sparsity terms in a nonconvex objective function. We propose a partially separable adaptive regularization algorithm using a $p$-th order Taylor model and show that the algorithm can produce an (epsilon,delta)-approximate q-th-order stationary point in at most O(epsilon^{-(p+1)/(p-q+1)}) evaluations of the objective … Read more

Weak subgradient algorithm for solving nonsmooth nonconvex unconstrained optimization problems

This paper presents a weak subgradient based method for solving nonconvex unconstrained optimization problems. The method uses a weak subgradient of the objective function at a current point, to generate a new one at every iteration. The concept of the weak subgradient is based on the idea of using supporting cones to the graph of … Read more

An optimal control theory for accelerated optimization

Accelerated optimization algorithms can be generated using a double-integrator model for the search dynamics imbedded in an optimal control problem. Citation unpublished Article Download View An optimal control theory for accelerated optimization

Pathfollowing for Parametric Mathematical Programs with Complementarity Constraints

In this paper we study procedures for pathfollowing parametric mathematical pro- grams with complementarity constraints. We present two procedures, one based on the penalty approach to solving standalone MPCCs, and one based on tracing active set bifurcations aris- ing from doubly-active complementarity constraints. We demonstrate the performance of these approaches on a variety of examples … Read more

A two-level distributed algorithm for nonconvex constrained optimization

This paper aims to develop distributed algorithms for nonconvex optimization problems with complicated constraints associated with a network. The network can be a physical one, such as an electric power network, where the constraints are nonlinear power flow equations, or an abstract one that represents constraint couplings between decision variables of different agents. Despite the … Read more

Tangencies and Polynomial Optimization

Given a polynomial function $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ and a unbounded basic closed semi-algebraic set $S \subset \mathbb{R}^n,$ in this paper we show that the conditions listed below are characterized exactly in terms of the so-called {\em tangency variety} of $f$ on $S$: (i) The $f$ is bounded from below on $S;$ (ii) The … Read more

Inexact restoration with subsampled trust-region methods for finite-sum minimization

Convex and nonconvex finite-sum minimization arises in many scientific computing and machine learning applications. Recently, first-order and second-order methods where objective functions, gradients and Hessians are approximated by randomly sampling components of the sum have received great attention. We propose a new trust-region method which employs suitable approximations of the objective function, gradient and Hessian … Read more

Subdifferentials and SNC property of scalarization functionals with uniform level sets and applications

This paper deals with necessary conditions for minimal solutions of constrained and unconstrained optimization problems with respect to general domination sets by using a well-known nonlinear scalarization functional with uniform level sets (called Gerstewitz’ functional in the literature). The primary objective of this work is to establish revised formulas for basic and singular subdifferentials of … Read more