Exploiting Sign Symmetries in Minimizing Sums of Rational Functions

This paper is devoted to the problem of minimizing a sum of rational functions over a basic semialgebraic set. We provide a hierarchy of sum of squares (SOS) relaxations that is dual to the generalized moment problem approach due to Bugarin, Henrion, and Lasserre. The investigation of the dual SOS aspect offers two benefits: 1) … Read more

Approaches to iterative algorithms for solving nonlinear equations with an application in tomographic absorption spectroscopy

In this paper we propose an approach for solving systems of nonlinear equations without computing function derivatives. Motivated by the application area of tomographic absorption spectroscopy, which is a highly-nonlinear problem with variables coupling, we consider a situation where straightforward translation to a fixed point problem is not possible because the operators that represent the … Read more

The if-then Polytope: Conditional Relations over Multiple Sets of Binary Variables

Inspired by its occurrence as a substructure in a stochastic railway timetabling model, we study in this work a special case of the bipartite boolean quadric polytope. It models conditional relations across three sets of binary variables, where selections within two “if” sets imply a choice in a corresponding “then” set. We call this polytope … Read more

A Parametric Approach for Solving Convex Quadratic Optimization with Indicators Over Trees

This paper investigates convex quadratic optimization problems involving $n$ indicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrix $Q$ defining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this … Read more

A Proximal-Gradient Method for Constrained Optimization

We present a new algorithm for solving optimization problems with objective functions that are the sum of a smooth function and a (potentially) nonsmooth regularization function, and nonlinear equality constraints. The algorithm may be viewed as an extension of the well-known proximal-gradient method that is applicable when constraints are not present. To account for nonlinear … Read more

Strengthening Lasserre’s Hierarchy in Real and Complex Polynomial Optimization

We establish a connection between multiplication operators and shift operators. Moreover, we derive positive semidefinite conditions of finite rank moment sequences and use these conditions to strengthen Lasserre’s hierarchy for real and complex polynomial optimization. Integration of the strengthening technique with sparsity is considered. Extensive numerical experiments show that our strengthening technique can significantly improve … Read more

Revisiting the fitting of the Nelson-Siegel and Svensson models

The Nelson-Siegel and the Svensson models are two of the most widely used models for the term structure of interest rates. Even though the models are quite simple and intuitive, fitting them to market data is numerically challenging and various difficulties have been reported. In this paper, a novel mathematical analysis of the fitting problem … Read more

Slow convergence of the moment-SOS hierarchy for an elementary polynomial optimization problem

We describe a parametric univariate quadratic optimization problem for which the moment-SOS hierarchy has finite but increasingly slow convergence when the parameter tends to its limit value. We estimate the order of finite convergence as a function of the parameter. ArticleDownload View PDF

Stochastic Aspects of Dynamical Low-Rank Approximation in the Context of Machine Learning

The central challenges of today’s neural network architectures are the prohibitive memory footprint and the training costs associated with determining optimal weights and biases. A large portion of research in machine learning is therefore dedicated to constructing memory-efficient training methods. One promising approach is dynamical low-rank training (DLRT) which represents and trains parameters as a … Read more