A Hybrid Gradient Method for Strictly Convex Quadratic Programming
In this paper, a reliable hybrid algorithm for solving convex quadratic minimization problems is presented. At each iteration, two points are computed: first, an auxiliary point $\dot{x}_k$ is generated by performing a gradient step equipped with an optimal steplength, then, the next iterate $x_{k+1}$ is obtained through a weighted sum of $\dot{x}_k$ with the penultimate … Read more