Biased and unbiased random-key genetic algorithms: An experimental analysis

We study the runtime performance of three types of random-key genetic algorithms: the unbiased algorithm of Bean (1994); the biased algorithm of Gonçalves and Resende (2011); and a greedy version of Bean’s algorithm on 12 instances from four types of covering problems: general-cost set covering, Steiner triple covering, general-cost set K-covering, and unit-cost covering by … Read more

ALGORITHM & DOCUMENTATION: MINRES-QLP for Singular Symmetric and Hermitian Linear Equations and Least-Squares Problems

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite … Read more

VSDP: A Matlab toolbox for verified semidefinite-quadratic-linear programming

VSDP is a software package that is designed for the computation of verified results in conic programming. The current version of VSDP supports the constraint cone consisting of the product of semidefinite cones, second-order cones and the nonnegative orthant. It provides functions for computing rigorous error bounds of the true optimal value, verified enclosures of … Read more

Parallel Coordinate Descent Methods for Big Data Optimization

In this work we show that randomized (block) coordinate descent methods can be accelerated by parallelization when applied to the problem of minimizing the sum of a partially separable smooth convex function and a simple separable convex function. The theoretical speedup, as compared to the serial method, and referring to the number of iterations needed … Read more

The Generalized Trust Region Subproblem

The \emph{interval bounded generalized trust region subproblem} (GTRS) consists in minimizing a general quadratic objective, $q_0(x) \rightarrow \min$, subject to an upper and lower bounded general quadratic constraint, $\ell \leq q_1(x) \leq u$. This means that there are no definiteness assumptions on either quadratic function. We first study characterizations of optimality for this \emph{implicitly} convex … Read more

AN INEXACT PERTURBED PATH-FOLLOWING METHOD FOR LAGRANGIAN DECOMPOSITION IN LARGE-SCALE SEPARABLE CONVEX OPTIMIZATION

This paper studies an inexact perturbed path-following algorithm in the framework of Lagrangian dual decomposition for solving large-scale separable convex programming problems. Unlike the exact versions considered in the literature, we propose to solve the primal subproblems inexactly up to a given accuracy. This leads to an inexactness of the gradient vector and the Hessian … Read more

Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: application to distributed MPC

In this paper we propose a parallel coordinate descent algorithm for solving smooth convex optimization problems with separable constraints that may arise e.g. in distributed model predictive control (MPC) for linear network systems. Our algorithm is based on block coordinate descent updates in parallel and has a very simple iteration. We prove (sub)linear rate of … Read more

On Defining Design Patterns to Generalize and Leverage Automated Constraint Solving

This position paper reflects on the generalization of adaptive methods for Constraint Programming (CP) solving mechanisms, and suggests the use of application-oriented descriptions as a means to broaden CP adoption in the industry. We regard as an adaptive method any procedure that modifies the behavior of the solving process according to previous experience gathered from … Read more

On parallelizing dual decomposition in stochastic integer programming

For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Car\o{}e and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of the \textit{master} program by using structure-exploiting interior-point solvers. Our results demonstrate the potential … Read more

Rate analysis of inexact dual first order methods: Application to distributed MPC for network systems

In this paper we propose two dual decomposition methods based on inexact dual gradient information for solving large-scale smooth convex optimization problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first order methods based on approximate gradients and we prove sublinear rate of convergence … Read more