Advancements in the computation of enclosures for multi-objective optimization problems

A central goal for multi-objective optimization problems is to compute their nondominated sets. In most cases these sets consist of infinitely many points and it is not a practical approach to compute them exactly. One solution to overcome this problem is to compute an enclosure, a special kind of coverage, of the nondominated set. One … Read more

Handling of constraints in multiobjective blackbox optimization

This work proposes the integration of two new constraint-handling approaches into the blackbox constrained multiobjective optimization algorithm DMulti-MADS, an extension of the Mesh Adaptive Direct Search (MADS) algorithm for single-objective constrained optimization. The constraints are aggregated into a single constraint violation function which is used either in a two-phase approach, where research of a feasible … Read more

Randomized Policy Optimization for Optimal Stopping

Optimal stopping is the problem of determining when to stop a stochastic system in order to maximize reward, which is of practical importance in domains such as finance, operations management and healthcare. Existing methods for high-dimensional optimal stopping that are popular in practice produce deterministic linear policies — policies that deterministically stop based on the … Read more

A branch-and-prune algorithm for discrete Nash equilibrium problems

We present a branch-and-prune procedure for discrete Nash equilibrium problems with a convex description of each player’s strategy set. The derived pruning criterion does not require player convexity, but only strict convexity of some player’s objective function in a single variable. If satisfied, it prunes choices for this variable by stating activity of certain constraints. … Read more

Convergence rates of the stochastic alternating algorithm for bi-objective optimization

Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating … Read more

Parallel Dual Dynamic Integer Programming for Large-Scale Hydrothermal Unit-Commitment

Unit commitment has been at the center of power system operation for well over 50 years. Yet, this problem cannot be considered solved due to its size and complexity. Today, operators rely on off-the-shelf optimization solvers to tackle this challenging problem, and often resort to simplifications to make the problem more tractable and solvable in … Read more

Discrete Optimal Transport with Independent Marginals is #P-Hard

We study the computational complexity of the optimal transport problem that evaluates the Wasserstein distance between the distributions of two K-dimensional discrete random vectors. The best known algorithms for this problem run in polynomial time in the maximum of the number of atoms of the two distributions. However, if the components of either random vector … Read more

Semi-infinite models for equilibrium selection

In their seminal work `A General Theory of Equilibrium Selection in Games’ (The MIT Press, 1988) Harsanyi and Selten introduce the notion of payoff dominance to explain how players select some solution of a Nash equilibrium problem from a set of nonunique equilibria. We formulate this concept for generalized Nash equilibrium problems, relax payoff dominance … Read more

A solver for multiobjective mixed-integer convex and nonconvex optimization

This paper proposes a general framework for solving multiobjective nonconvex optimization problems, i.e., optimization problems in which multiple objective functions have to be optimized simultaneously. Thereby, the nonconvexity might come from the objective or constraint functions, or from integrality conditions for some of the variables. In particular, multiobjective mixed-integer convex and nonconvex optimization problems are … Read more

Distributional robustness and inequity mitigation in disaster preparedness of humanitarian operations

We study a predisaster relief network design problem with uncertain demands. The aim is to determine the prepositioning and reallocation of relief supplies. Motivated by the call of the International Federation of Red Cross and Red Crescent Societies (IFRC) to leave no one behind, we consider three important practical aspects of humanitarian operations: shortages, equity, … Read more