Batch Learning in Stochastic Dual Dynamic Programming

We consider the stochastic dual dynamic programming (SDDP) algorithm, which is a widely employed algorithm applied to multistage stochastic programming, and propose a variant using batch learning, a technique used with success in the reinforcement learning framework. We cast SDDP as a type of Q-learning algorithm and describe its application in both risk neutral and … Read more

An Upper Bound on the Hausdorff Distance Between a Pareto Set and its Discretization in Bi-Objective Convex Quadratic Optimization

We provide upper bounds on the Hausdorff distances between the efficient set and its discretization in the decision space, and between the Pareto set (also called the Pareto front) and its discretization in the objective space, in the context of bi-objective convex quadratic optimization on a compact feasible set. Our results imply that if t … Read more

Algorithms for the Clique Problem with Multiple-Choice Constraints under a Series-Parallel Dependency Graph

The clique problem with multiple-choice constraints (CPMC), i.e. the problem of finding a k-clique in a k-partite graph with known partition, occurs as a substructure in many real-world applications, in particular scheduling and railway timetabling. Although CPMC is NP-complete in general, it is known to be solvable in polynomial time when the so-called dependency graph … Read more

Parallel Strategies for Direct Multisearch

Direct Multisearch (DMS) is a Derivative-free Optimization class of algorithms suited for computing approximations to the complete Pareto front of a given Multiobjective Optimization problem. It has a well-supported convergence analysis and simple implementations present a good numerical performance, both in academic test sets and in real applications. Recently, this numerical performance was improved with … Read more

Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces

In vector optimization, it is of increasing interest to study problems where the image space (a real linear space) is preordered by a not necessarily solid (and not necessarily pointed) convex cone. It is well-known that there are many examples where the ordering cone of the image space has an empty (topological / algebraic) interior, … Read more

A Multiobjective Approach for Sector Duration Optimization in Stereotactic Radiosurgery Treatment Planning

Sector duration optimization (SDO) is a problem arising in treatment planning for stereotactic radiosurgery on Gamma Knife. Given a set of isocenter locations, SDO aims to select collimator size configurations and irradiation times thereof such that target tissues receive prescribed doses in a reasonable amount of treatment time, while healthy tissues nearby are spared. We … Read more

Limit sets in global multiobjective optimization

Inspired by the recently introduced branch-and-bound method for continuous multiobjective optimization problems from G. Eichfelder, P. Kirst, L. Meng, O. Stein, A general branch-and-bound framework for continuous global multiobjective optimization, Journal of Global Optimization, 80 (2021) 195-227, we study for a general class of branch-and-bound methods in which sense the generated terminal enclosure and the … Read more

A Fast and Robust Algorithm for Solving Biobjective Mixed Integer Programs

We present a fast and robust algorithm for solving biobjective mixed integer programs. The algorithm extends and merges ideas from two existing methods: the Boxed Line Method and the epsilon-Tabu Method. We demonstrate its efficacy in an extensive computational study. We also demonstrate that it is capable of producing a high-quality approximation of the nondominated … Read more

Exact algorithms for the 0-1 Time-bomb Knapsack Problem

We consider a stochastic version of the 0–1 Knapsack Problem in which, in addition to profit and weight, each item is associated with a probability of exploding and destroying all the contents of the knapsack. The objective is to maximize the expected profit of the selected items. The resulting problem, denoted as 0–1 Time-Bomb Knapsack … Read more

Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting

Forecasting and decision-making are generally modeled as two sequential steps with no feedback, following an open-loop approach. In this paper, we present application-driven learning, a new closed-loop framework in which the processes of forecasting and decision-making are merged and co-optimized through a bilevel optimization problem. We present our methodology in a general format and prove … Read more