On a Frank-Wolfe Approach for Abs-smooth Functions

We propose an algorithm which appears to be the first bridge between the fields of conditional gradient methods and abs-smooth optimization. Our problem setting is motivated by various applications that lead to nonsmoothness, such as $\ell_1$ regularization, phase retrieval problems, or ReLU activation in machine learning. To handle the nonsmoothness in our problem, we propose … Read more

Cooperative locker locations games

More and more people order products online and have parcels delivered to their homes. This leads to more congestion, negatively impacting the environment, public health, and safety. Carriers can use parcel lockers to consolidate and serve their customers to reduce these negative impacts. The implementation of a locker network can, however, be financially challenging. To … Read more

An approximation algorithm for multi-objective mixed-integer convex optimization

In this article we introduce an algorithm that approximates Pareto fronts of multiobjective mixed-integer convex optimization problems. The algorithm constructs an inner and outer approximation of the front exploiting the convexity of the patches and is applicable to problems with an arbitrary number of criteria. In the algorithm, the problem is decomposed into patches, which … Read more

Column Elimination for Capacitated Vehicle Routing Problems

We introduce a column elimination procedure for the capacitated vehicle routing problem. Our procedure maintains a decision diagram to represent a relaxation of the set of feasible routes, over which we define a constrained network flow. The optimal solution corresponds to a collection of paths in the decision diagram and yields a dual bound. The … Read more

A PDE-Constrained Generalized Nash Equilibrium Approach for Modeling Gas Markets with Transport

We investigate a class of generalized Nash equilibrium problems (GNEPs) in which the objectives of the individuals are interdependent and the shared constraint consists of a system of partial differential equations. This setup is motivated by the modeling of strategic interactions of competing firms, which explicitly take into account the dynamics of transporting a commodity, … Read more

On the Relationship Between the Value Function and the Efficient Frontier of a Mixed Integer Linear Optimization Problem

In this study, we investigate the connection between the efficient frontier (EF) of a general multiobjective mixed integer linear optimization problem (MILP) and the so-called restricted value function (RVF) of a closely related single-objective MILP. In the first part of the paper, we detail the mathematical structure of the RVF, including characterizing the set of … Read more

Inefficiency of pure Nash equilibria in network congestion games: the impact of symmetry and graph structure

We study the inefficiency of pure Nash equilibria in symmetric unweighted network congestion games. We first explore the impact of symmetry on the worst-case PoA of network congestion games. For polynomial delay functions with highest degree p, we construct a family of symmetric congestion games over arbitrary networks which achieves the same worst-case PoA of … Read more

A Column Generation Approach for the Lexicographic Optimization of Intra-Hospital Transports

Over the last fewyears, the efficient design of processes in hospitals and medical facilities has received more and more attention, particularly when the improvement of the processes is aimed at relieving theworkload of medical staff. To this end,we have developed a method to determine optimal allocations of intra-hospital transports to hospital transport employees. When optimizing … Read more

A Test Instance Generator for Multiobjective Mixed-integer Optimization

Application problems can often not be solved adequately by numerical algorithms as several difficulties might arise at the same time. When developing and improving algorithms which hopefully allow to handle those difficulties in the future, good test instances are required. These can then be used to detect the strengths and weaknesses of different algorithmic approaches. … Read more

A Sequential Quadratic Programming Method for Optimization with Stochastic Objective Functions, Deterministic Inequality Constraints and Robust Subproblems

In this paper, a robust sequential quadratic programming method of Burke and Han (Math Programming, 1989)  for constrained optimization is generalized to problem with stochastic objective function, deterministic equality and inequality constraints. A stochastic line search scheme in Paquette and Scheinberg (SIOPT, 2020) is employed to globalize the steps. We show that in the case … Read more