Ensemble Methods for Robust Support Vector Machines using Integer Programming

In this work we study binary classification problems where we assume that our training data is subject to uncertainty, i.e. the precise data points are not known. To tackle this issue in the field of robust machine learning the aim is to develop models which are robust against small perturbations in the training data. We … Read more

Portfolio optimization in the presence of estimation errors on the expected asset returns

It is well known that the classical Markowitz model for portfolio optimization is extremely sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We focus on ellipsoidal uncertainty sets around the point estimates of the expected asset returns. We investigate the performance of diagonal estimation-error matrices in the description of … Read more

Fleet & tail assignment under uncertainty

Airlines solve many different optimization problems and combine the resulting solutions to ensure smooth, minimum-cost operations. Crucial problems are the Fleet Assignment, which assigns aircraft types to flights of a given schedule, and the Tail Assignment, which determines individual flight sequences to be performed by single aircraft. In order to find a cost-optimal solution, many … Read more

Minkowski Centers via Robust Optimization: Computation and Applications

Centers of convex sets are geometric objects that have received extensive attention in the mathematical and optimization literature, both from a theoretical and practical standpoint. For instance, they serve as initialization points for many algorithms such as interior-point, hit-and-run, or cutting-planes methods. First, we observe that computing a Minkowski center of a convex set can be formulated as … Read more

Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

Multistage mixed-integer distributionally robust optimization (DRO) forms a class of extremely challenging problems since their size grows exponentially with the number of stages. One way to model the uncertainty in multistage DRO is by creating sets of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario tree and requiring that such distributions remain … Read more

Distributional robustness and inequity mitigation in disaster preparedness of humanitarian operations

We study a predisaster relief network design problem with uncertain demands. The aim is to determine the prepositioning and reallocation of relief supplies. Motivated by the call of the International Federation of Red Cross and Red Crescent Societies (IFRC) to leave no one behind, we consider three important practical aspects of humanitarian operations: shortages, equity, … Read more

Absolute regret of implicitly defined sets for combinatorial optimization problems

We consider combinatorial optimization problems with interval uncertainty in the cost vector. Recently a new approach was developed to deal with such uncertainties: instead of a single one absolute robust solution, obtained by solving a min max problem, a set of cardinality predefined and minimal absolute regret, obtained by solving a min max min problem, … Read more

Optimal Robust Policy for Feature-Based Newsvendor

We study policy optimization for the feature-based newsvendor, which seeks an end-to-end policy that renders an explicit mapping from features to ordering decisions. Unlike existing works that restrict the policies to some parametric class which may suffer from sub-optimality (such as affine class) or lack of interpretability (such as neural networks), we aim to optimize … Read more

An oracle-based framework for robust combinatorial optimization

We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem,the algorithm is entirely oracle-based, i.e., our approach only requires … Read more

A Lagrangian Dual Method for Two-Stage Robust Optimization with Binary Uncertainties

This paper presents a new exact method to calculate worst-case parameter realizations in two-stage robust optimization problems with categorical or binary-valued uncertain data. Traditional exact algorithms for these problems, notably Benders decomposition and column-and-constraint generation, compute worst-case parameter realizations by solving mixed-integer bilinear optimization subproblems. However, their numerical solution can be computationally expensive not only … Read more