MDP modeling for multi-stage stochastic programs

We study a class of multi-stage stochastic programs, which incorporate modeling features from Markov decision processes (MDPs). This class includes structured MDPs with continuous state and action spaces. We extend policy graphs to include decision-dependent uncertainty for one-step transition probabilities as well as a limited form of statistical learning. We focus on the expressiveness of … Read more

An extension of an interior-point method to include risk aversion in large-scale multistage stochastic optimization

In the earlier paper “On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach, European Journal of Operational Research, 310 (2023), 268–285” the authors presented a novel approach based on a specialized interior-point method (IPM) for solving (risk neutral) large-scale multistage stochastic optimization problems. The method computed the Newton direction by combining … Read more

Approximating value functions via corner Benders’ cuts

We introduce a novel technique to generate Benders’ cuts from a conic relaxation (“corner”) derived from a basis of a higher-dimensional polyhedron that we aim to outer approximate in a lower-dimensional space. To generate facet-defining inequalities for the epigraph associated to this corner, we develop a computationally-efficient algorithm based on a compact reverse polar formulation … Read more

Approximating inequality systems within probability functions: studying implications for problems and consistency of first-order information

In this work, we are concerned with the study of optimization problems featuring so-called probability or chance constraints. Probability constraints measure the level of satisfaction of an underlying random inequality system and ensure that this level is high enough. Such an underlying inequality system could be expressed by an abstractly known or perhaps costly to … Read more

Solution of Stochastic Facility Location Problems with Combinatorially many Decision-Dependent Distributions

This article describes a model and an exact solution method for facility location problems with decision-dependent uncertainties. The model allows characterizing the probability distribution of the random elements as a function of the choice of open facilities. This, in turn, generates a combinatorial number of potential distributions of the random elements. Though general in the … Read more

Measuring the Economic Value of Wind–Solar Complementarity in Europe Using Chance Constraints

The variability of wind and solar photovoltaic (PV) generation poses significant risks for producers in day-ahead electricity markets, where commitments must be made before actual output is realized. A common mitigation strategy is to invest in storage, but an alternative is to exploit the natural complementarity between wind and solar resources. We evaluate this economic … Read more

Extracting Alternative Solutions from Benders Decomposition

We show how to extract alternative solutions for optimization problems solved by Benders Decom- position. In practice, alternative solutions provide useful insights for complex applications; some solvers do support generation of alternative solutions but none appear to support such generation when using Benders Decomposition. We propose a new post-processing method that extracts multiple optimal and … Read more

A Minimalist Bayesian Framework for Stochastic Optimization

The Bayesian paradigm offers principled tools for sequential decision-making under uncertainty, but its reliance on a probabilistic model for all parameters can hinder the incorporation of complex structural constraints. We introduce a minimalist Bayesian framework that places a prior only on the component of interest, such as the location of the optimum. Nuisance parameters are … Read more

When Wasserstein DRO Reduces Exactly: Complete Characterization, Projection Equivalence, and Regularization

Wasserstein distributionally robust optimization (DRO), a leading paradigm in data-driven decision-making, entails the evaluation of worst-case risk over a high-dimensional Wasserstein ball–a major computational burden. In this paper, we study when the worst-case risk problem admits an exact reduction to the evaluation of risk over a one-dimensional projected Wasserstein ball—a property we refer to as … Read more

Asynchronous Adaptive Gradient Tracking Methods for Distributed Stochastic Optimization Problems with Decision-dependent Distributions

This paper proposes a distributed asynchronous adaptive gradient tracking method, DASYAGT, to solve the distributed stochastic optimization problems with decision-dependent distributions over directed graphs. DASYAGT employs the local adaptive gradient to estimate the gradient of the objective function and introduces the auxiliary running-sum variable to handle asynchrony. We show that the iterates generated by DASYAGT … Read more