On Linear Bilevel Optimization Problems with Complementarity-Constrained Lower Levels

We consider a novel class of linear bilevel optimization models with a lower level that is a linear program with complementarity constraints (LPCC). We present different single-level reformulations depending on whether the linear complementarity problem (LCP) as part of the lower-level constraint set depends on the upper-level decisions or not as well as on whether … Read more

New exact approaches for the combined cell layout problem and extensions of the multi-bay facility layout problem

In this paper we consider the Combined Cell Layout Problem (CCLP), the Multi-Bay Facility Layout Problem (MBFLP) and several generalizations of the MBFLP, which have wide applications, e.g., in factory planning, heavy manufacturing, semiconductor fabrication and arranging rooms in hospitals. Given a set of cells of type single-row or directed-circular and a set of one-dimensional … Read more

A Novel Solution Methodology for Wasserstein-based Data-Driven Distributionally Robust Problems

Distributionally robust optimization (DRO) is a mathematical framework to incorporate ambiguity over the actual data-generating probability distribution. Data-driven DRO problems based on the Wasserstein distance are of particular interest for their sound mathematical properties. For right-hand-sided uncertainty, however, existing methods rely on dual vertex enumeration rendering the problem intractable in practical applications. In this context, … Read more

Planning the City Operations of a Parcel Express Company

We introduce an interesting and challenging routing and scheduling problem arising in the city operations of SF Express, a large package express carrier in China. Vehicles execute multiple trips during a planning horizon spanning multiple shifts, where a trip can involve deliveries only, pickups only, or deliveries followed by pickups. Complicating factors include split deliveries … Read more

Why there is no need to use a big-M in linear bilevel optimization: A computational study of two ready-to-use approaches

Linear bilevel optimization problems have gained increasing attention both in theory as well as in practical applications of Operations Research (OR) during the last years and decades. The latter is mainly due to the ability of this class of problems to model hierarchical decision processes. However, this ability makes bilevel problems also very hard to … Read more

Minimization of L1 over L2 for sparse signal recovery with convergence guarantee

The ratio of the $L_1$ and $L_2$ norms, denoted by $L_1/L_2$, becomes attractive due to its scale-invariant property when approximating the $L_0$ norm to promote sparsity. In this paper, we incorporate the $L_1/L_2$ formalism into an unconstrained model in order to deal with both noiseless and noisy observations. To design an efficient algorithm, we derive … Read more

Partial Lasserre relaxation for sparse Max-Cut

A common approach to solve or find bounds of polynomial optimization problems like Max-Cut is to use the first level of the Lasserre hierarchy. Higher levels of the Lasserre hierarchy provide tighter bounds, but solving these relaxations is usually computationally intractable. We propose to strengthen the first level relaxation for sparse Max-Cut problems using constraints … Read more

Spectral relaxations and branching strategies for global optimization of mixed-integer quadratic programs

We consider the global optimization of nonconvex quadratic programs and mixed-integer quadratic programs. We present a family of convex quadratic relaxations which are derived by convexifying nonconvex quadratic functions through perturbations of the quadratic matrix. We investigate the theoretical properties of these quadratic relaxations and show that they are equivalent to some particular semidefinite programs. … Read more

A General Framework for Optimal Data-Driven Optimization

We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision … Read more

On Distributionally Robust Multistage Convex Optimization: New Algorithms and Complexity Analysis

This paper presents a novel algorithmic study and complexity analysis of distributionally robust multistage convex optimization (DR-MCO). We propose a new class of algorithms for solving DR-MCO, namely a sequential dual dynamic programming (Seq-DDP) algorithm and its nonsequential version (NDDP). The new algorithms generalize and strengthen existing DDP-type algorithms by introducing the technique of regularization … Read more