A Branch-and-Price-and-Cut Algorithm for Discrete Network Design Problems Under Traffic Equilibrium

This study addresses discrete network design problems under traffic equilibrium conditions or DNDPs. Given a network and a budget, DNDPs aim to model all-or-nothing decisions such as link addition to minimize network congestion effects. Congestion is measured using traffic equilibrium theory where link travel times are modeled as convex flow-dependent functions and where users make … Read more

Unboundedness in Bilevel Optimization

Bilevel optimization has garnered growing interest over the past decade. However, little attention has been paid to detecting and dealing with unboundedness in these problems, with most research assuming a bounded high-point relaxation. In this paper, we address unboundedness in bilevel and multilevel optimization by studying its computational complexity. We show that deciding whether an … Read more

An analytical lower bound for a class of minimizing quadratic integer optimization problems

Lower bounds on minimization problems are essential for convergence of both branching-based and iterative solution methods for optimization problems. They are also required for evaluating the quality of feasible solutions by providing conservative optimality gaps. We provide an analytical lower bound for a class of quadratic optimization problems with binary decision variables. In contrast to … Read more

Exploiting Negative Curvature in Conjunction with Adaptive Sampling: Theoretical Results and a Practical Algorithm

In this paper, we propose algorithms that exploit negative curvature for solving noisy nonlinear nonconvex unconstrained optimization problems. We consider both deterministic and stochastic inexact settings, and develop two-step algorithms that combine directions of negative curvature and descent directions to update the iterates. Under reasonable assumptions, we prove second-order convergence results and derive complexity guarantees … Read more

Distributionally Robust Optimization

Distributionally robust optimization (DRO) studies decision problems under uncertainty where the probability distribution governing the uncertain problem parameters is itself uncertain. A key component of any DRO model is its ambiguity set, that is, a family of probability distributions consistent with any available structural or statistical information. DRO seeks decisions that perform best under the … Read more

New efficient accelerated and stochastic gradient descent algorithms based on locally Lipschitz gradient constants

In this paper, we revisit the recent stepsize applied for the gradient descent scheme which is called NGD proposed by [Hoai et al., A novel stepsize for gradient descent method, Operations Research Letters (2024) 53, doi: \href{10.1016/j.orl.2024.107072}{10.1016/j.orl.2024.107072}]. We first investigate NGD stepsize with two well-known accelerated techniques which are Heavy ball and Nesterov’s methods. In … Read more

Universal nonmonotone line search method for nonconvex multiobjective optimization problems with convex constraints

In this work we propose a general nonmonotone line-search method for nonconvex multi-objective optimization problems with convex constraints. At the \(k\)th iteration, the degree of nonmonotonicity is controlled by a vector \(\nu_{k}\) with nonnegative components. Different choices for \(\nu_{k}\) lead to different nonmonotone step-size rules. Assuming that the sequence \(\left\{\nu_{k}\right\}_{k\geq 0}\) is summable, and that … Read more

Accelerating Benders decomposition for solving a sequence of sample average approximation replications

Sample average approximation (SAA) is a technique for obtaining approximate solutions to stochastic programs that uses the average from a random sample to approximate the expected value that is being optimized. Since the outcome from solving an SAA is random, statistical estimates on the optimal value of the true problem can be obtained by solving … Read more

Sparse Principal Component Analysis with Non-Oblivious Adversarial Perturbations

Sparse Principal Component Analysis (sparse PCA) is a fundamental dimension-reduction tool that enhances interpretability in various high-dimensional settings. An important variant of sparse PCA studies the scenario when samples are adversarially perturbed. Notably, most existing statistical studies on this variant focus on recovering the ground truth and verifying the robustness of classical algorithms when the … Read more

Gradient Methods with Online Scaling

We introduce a framework to accelerate the convergence of gradient-based methods with online learning. The framework learns to scale the gradient at each iteration through an online learning algorithm and provably accelerates gradient-based methods asymptotically. In contrast with previous literature, where convergence is established based on worst-case analysis, our framework provides a strong convergence guarantee … Read more