Exploiting Overlap Information in Chance-constrained Program with Random Right-hand Side

We consider the chance-constrained program (CCP) with random right-hand side under a finite discrete distribution. It is known that the standard mixed integer linear programming (MILP) reformulation of the CCP is generally difficult to solve by general-purpose solvers as the branch-and-cut search trees are enormously large, partly due to the weak linear programming relaxation. In … Read more

Composite optimization models via proximal gradient method with a novel enhanced adaptive stepsize

We first consider the convex composite optimization models with the local Lipschitzness condition imposed on the gradient of the differentiable term. The classical proximal gradient method will be studied with our novel enhanced adaptive stepsize selection. To obtain the convergence of the proposed algorithm, we establish a sufficient decrease type inequality associated with our new … Read more

Robustness Analysis for Adaptive Optimization With Application to Industrial Decarbonization in the Netherlands

Robustness analysis assesses the performance of a particular solution under variation in the input data. This is distinct from sensitivity analysis, which assesses how variation in the input data changes a model’s optimal solution. For risk assessment purposes, robustness analysis has more practical value than sensitivity analysis. This is because sensitivity analysis, when applied to … Read more

Stabilizing GNEP-Based Model Predictive Control: Quasi-GNEPs and End Constraints

We present a feedback scheme for non-cooperative dynamic games and investigate its stabilizing properties. The dynamic games are modeled as generalized Nash equilibrium problems (GNEP) in which the shared constraint consists of linear time-discrete dynamic equations (e.g., sampled from a partial or ordinary differential equation), which are jointly controlled by the players’ actions. Further, the … Read more

Optimization without Retraction on the Random Generalized Stiefel Manifold

Optimization over the set of matrices \(X\) that satisfy \(X^\top B X = I_p\), referred to as the generalized Stiefel manifold, appears in many applications involving sampled covariance matrices such as the canonical correlation analysis (CCA), independent component analysis (ICA), and the generalized eigenvalue problem (GEVP). Solving these problems is typically done by iterative methods … Read more

Floorplanning with I/O assignment via feasibility-seeking and superiorization methods

The feasibility-seeking approach offers a systematic framework for managing and resolving intricate constraints in continuous problems, making it a promising avenue to explore in the context of floorplanning problems with increasingly heterogeneous constraints. The classic legality constraints can be expressed as the union of convex sets. However, conventional projection-based algorithms for feasibility-seeking do not guarantee … Read more

Recognizing weighted means in geodesic spaces

Geodesic metric spaces support a variety of averaging constructions for given finite sets. Computing such averages has generated extensive interest in diverse disciplines. Here we consider the inverse problem of recognizing computationally whether or not a given point is such an average, exactly or approximately. In nonpositively curved spaces, several averaging notions, including the usual … Read more

Strict efficiency in set optimization studied with the set approach

This paper is devoted to strict efficiency in set optimization studied with the set approach. Strict efficient solutions are defined with respect to the $l$-type less order relation and the possibly less order relation. Scalar characterization and necessary and/or sufficient conditions for such solutions are obtained. In particular, we establish some conditions expressed in terms … Read more

A mathematical introduction to SVMs with self-concordant kernel

A derivation of so-called “soft-margin support vector machines with kernel” is presented along with elementary proofs that do not rely on concepts from functional analysis such as Mercer’s theorem or reproducing kernel Hilbert spaces which are frequently cited in this context. The analysis leads to new continuity properties of the kernel functions, in particular a … Read more