Positive polynomials on unbounded equality-constrained domains

Certificates of non-negativity are fundamental tools in optimization. A “certificate” is generally understood as an expression that makes the non-negativity of the function in question evident. Some classical certificates of non-negativity are Farkas Lemma and the S-lemma. The lift-and-project procedure can be seen as a certificate of non-negativity for affine functions over the union of … Read more

A stochastic multiscale model for electricity generation capacity expansion

Long-term planning for electric power systems, or capacity expansion, has traditionally been modeled using simplified models or heuristics to approximate the short-term dynamics. However, current trends such as increasing penetration of intermittent renewable generation and increased demand response requires a coupling of both the long and short term dynamics. We present an efficient method for … Read more

The Reliable Hub-and-spoke Design Problem: Models and Algorithms

This paper presents a study on reliable single and multiple allocation hub-and-spoke network design problems where disruptions at hubs and the resulting hub unavailability can be mitigated by backup hubs and alternative routes. It builds nonlinear mixed integer programming models and presents linearized formulas. To solve those difficult problems, Lagrangian relaxation and Branch-and-Bound methods are … Read more

Dependence of bilevel programming on irrelevant data

In 1997, Macal and Hurter have found that adding a constraint to the lower level problem, which is not active at the computed global optimal solution, can destroy global optimality. In this paper this property is reconsidered and it is shown that this solution remains locally optimal under inner semicontinuity of the original solution set … Read more

Distributionally robust workforce scheduling in call centers with uncertain arrival rates

Call center scheduling aims to set-up the workforce so as to meet target service levels. The service level depends on the mean rate of arrival calls, which fluctuates during the day and from day to day. The staff scheduling must adjust the workforce period per period during the day, but the flexibility in so doing … Read more

On the Computational Complexity of Membership Problems for the Completely Positive Cone and its Dual

Copositive programming has become a useful tool in dealing with all sorts of optimisation problems. It has however been shown by Murty and Kabadi [K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Mathematical Programming, 39, no.2:117–129, 1987] that the strong membership problem for the copositive cone, that is deciding whether … Read more

Sampling Decisions in Optimum Experimental Design in the Light of Pontryagin’s Maximum Principle

Optimum Experimental Design (OED) problems are optimization problems in which an experimental setting and decisions on when to measure – the so-called sampling design – are to be determined such that a follow-up parameter estimation yields accurate results for model parameters. In this paper we use the interpretation of OED as optimal control problems with … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

DIFFERENCE FILTER PRECONDITIONING FOR LARGE COVARIANCE MATRICES

In many statistical applications one must solve linear systems corresponding to large, dense, and possibly irregularly structured covariance matrices. These matrices are often ill- conditioned; for example, the condition number increases at least linearly with respect to the size of the matrix when observations of a random process are obtained from a xed domain. This … Read more

A short derivation of the Kuhn-Tucker conditions

The Kuhn-Tucker conditions have been used to derive many significant results in economics. However, thus far, their derivation has been a little bit troublesome. The author directly derives the Kuhn-Tucker conditions by applying a corollary of Farkas’s lemma under the Mangasarian-Fromovitz constraint qualification. CitationDiscussion Paper Series A, No. 2011-234, Graduate School of Economics and Business … Read more