The Maximum Singularity Degree for Linear and Semidefinite Programming
ArticleDownload View PDF
ArticleDownload View PDF
Existing decentralized algorithms usually require knowledge of problem parameters for updating local iterates. For example, the hyperparameters (such as learning rate) usually require the knowledge of Lipschitz constant of the global gradient or topological information of the communication networks, which are usually not accessible in practice. In this paper, we propose D-NASA, the first algorithm … Read more
In this paper, we propose a new algorithm for solving monotone mixed variational inequality problems in real Hilbert spaces based on proximal gradient method. Our new algorithm uses a novel explicit stepsize which is proved to be increasing to a positive value. This property plays an important role in improving the speed of the algorithm. … Read more
This paper proposes a stochastic proximal point method to solve a stochastic convex composite optimization problem. High probability results in stochastic optimization typically hinge on restrictive assumptions on the stochastic gradient noise, for example, sub-Gaussian distributions. Assuming only weak conditions such as bounded variance of the stochastic gradient, this paper establishes a low sample complexity … Read more
We study T-semidefinite programming (SDP) relaxation for constrained polynomial optimization problems (POPs). T-SDP relaxation for unconstrained POPs was introduced by Zheng, Huang and Hu in 2022. In this work, we propose a T-SDP relaxation for POPs with polynomial inequality constraints and show that the resulting T-SDP relaxation formulated with third-order tensors can be transformed into … Read more
The difficulty of minimizing a nonconvex function is in part explained by the presence of saddle points. This slows down optimization algorithms and impacts worst-case complexity guarantees. However, many nonconvex problems of interest possess a favorable structure for optimization, in the sense that saddle points can be escaped efficiently by appropriate algorithms. This strict saddle … Read more
We focus on constrained, \(L\)-smooth, nonconvex-nonconcave min-max problems either satisfying \(\rho\)-cohypomonotonicity or admitting a solution to the \(\rho\)-weakly Minty Variational Inequality (MVI), where larger values of the parameter \(\rho>0\) correspond to a greater degree of nonconvexity. These problem classes include examples in two player reinforcement learning, interaction dominant min-max problems, and certain synthetic test problems on … Read more
Partial inverse combinatorial optimization problems are bilevel optimization problems in which the leader aims to incentivize the follower to include a given set of elements in the solution of their combinatorial problem. If the set of required elements defines a complete follower solution, the inverse combinatorial problem is solvable in polynomial time as soon as … Read more
We present a linear cutting-plane relaxation approach that rapidly proves tight lower bounds for the Alternating Current Optimal Power Flow Problem (ACOPF). Our method leverages outer-envelope linear cuts for well-known second-order cone relaxations for ACOPF along with modern cut management techniques. These techniques prove effective on a broad family of ACOPF instances, including the largest … Read more
The worldwide citrus market has been impacted by various factors in recent years, including population growth, phytosanitary diseases, high costs of agricultural inputs, and diminishing planting areas. As a consequence, producers in this sector have attempted to find tools to support strategic planting decisions, and thus meet international contract demands. This paper proposes an optimization … Read more