Perturbations and metric regularity

A point x is an approximate solution of a generalized equation [b lies in F(x)] if the distance from the point b to the set F(x) is small. Metric regularity of the set-valued mapping F means that, locally, a constant multiple of this distance bounds the distance from x to an exact solution. The smallest … Read more

An incremental method for solving convex finite minmax problems

We introduce a new approach to minimizing a function defined as the pointwise maximum over finitely many convex real functions (next referred to as the “component functions”), with the aim of working on the basis of “incomplete knowledge” of the objective function. In fact, a descent algorithm is proposed which does not necessarily require at … Read more

Steering Exact Penalty Methods for Optimization

This paper reviews, extends and analyzes a new class of penalty methods for nonlinear optimization. These methods adjust the penalty parameter dynamically; by controlling the degree of linear feasibility achieved at every iteration, they promote balanced progress toward optimality and feasibility. In contrast with classical approaches, the choice of the penalty parameter ceases to be … Read more

Convergence Analysis of an Interior-Point Method for Mathematical Programs with Equilibrium Constraints

We prove local and global convergence results for an interior-point method applied to mathematical programs with equilibrium constraints. The global result shows the algorithm minimizes infeasibility regardless of starting point, while one result proves local convergence when penalty functions are exact; another local result proves convergence when the solution is not even a KKT point. … Read more

Computational Experience with Rigorous Error Bounds for the Netlib Linear Programming Library

The Netlib library of linear programming problems is a well known suite containing many real world applications. Recently it was shown by Ordonez and Freund that 71% of these problems are ill-conditioned. Hence, numerical difficulties may occur. Here, we present rigorous results for this library that are computed by a verification method using interval arithmetic. … Read more

Algorithm xxx: APPSPACK 4.0: Asynchronous Parallel Pattern Search for Derivative-Free Optimization

APPSPACK is software for solving unconstrained and bound constrained optimization problems. It implements an asynchronous parallel pattern search method that has been specifically designed for problems characterized by expensive function evaluations. Using APPSPACK to solve optimization problems has several advantages: No derivative information is needed; the procedure for evaluating the objective function can be executed … Read more

Sums of Random Symmetric Matrices and Applications

Let B_i be deterministic symmetric m\times m matrices, and \xi_i be independent random scalars with zero mean and “of order of one” (e.g., \xi_i are Gaussian with zero mean and unit standard deviation). We are interested in conditions for the “typical norm” of the random matrix S_N = \xi_1B_1+…+\xi_NB_N to be of order of 1. … Read more

A Fully Sparse Implementation of a Primal-Dual Interior-Point Potential Reduction Method for Semidefinite Programming

In this paper, we show a way to exploit sparsity in the problem data in a primal-dual potential reduction method for solving a class of semidefinite programs. When the problem data is sparse, the dual variable is also sparse, but the primal one is not. To avoid working with the dense primal variable, we apply … Read more

Continuous optimization of beamlet intensities for photon and proton radiotherapy

Inverse approaches and, in particular, intensity modulated radiotherapy (IMRT), in combination with the development of new technologies such as multi-leaf collimators (MLCs), have enabled new potentialities of radiotherapy for cancer treatment. The main mathematical tool needed in this connection is numerical optimization. In this article, the variety of continuous optimization approaches, which have been proposed … Read more

Magnetic Resonance Tissue Density Estimation using Optimal SSFP Pulse-Sequence Design

In this paper, we formulate a nonlinear, nonconvex semidefinite optimization problem to select the steady-state free precession (SSFP) pulse-sequence design variables which maximize the contrast to noise ratio in tissue segmentation. The method could be applied to other pulse sequence types, arbitrary numbers of tissues, and numbers of images. To solve the problem we use … Read more