Shortfall Risk Models When Information of Loss Function Is Incomplete

Utility-based shortfall risk measure (SR) has received increasing attentions over the past few years for its potential to quantify more effectively the risk of large losses than conditional value at risk. In this paper we consider the case that the true loss function is unavailable either because it is difficult to be identified or the … Read more

Data-Driven Inverse Optimization with Imperfect Information

In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent’s objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect … Read more

On Theoretical and Numerical Aspects of the Shape Sensitivity Analysis for the 3D Time-dependent Maxwell’s Equations

We propose a novel approach using shape derivatives to solve inverse optimization problems governed by Maxwell’s equations, focusing on identifying hidden geometric objects in a predefined domain. The target functional is of tracking type and determines the distance between the solution of a 3D time-dependent Maxwell problem and given measured data in an $L_2$-norm. Minimization … Read more

A Parallel Evolution Strategy for an Earth Imaging Problem in Geophysics

In this paper we propose a new way to compute a warm starting point for a challenging global optimization problem related to Earth imaging in geophysics. The warm start consists of a velocity model that approximately solves a full-waveform inverse problem at low frequency. Our motivation arises from the availability of massively parallel computing platforms … Read more

Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however … Read more

Convergence Rates with Inexact Nonexpansive Operators

In this paper, we present a convergence rate analysis for the inexact Krasnosel’ski{\u{\i}}-Mann iteration built from nonexpansive operators. Our results include two main parts: we first establish global pointwise and ergodic iteration-complexity bounds, and then, under a metric subregularity assumption, we establish local linear convergence for the distance of the iterates to the set of … Read more

Topology Optimization for Magnetic Circuits dedicated to Electric Propulsion

Abstract—In this paper, we present a method to solve inverse problems of electromagnetic circuit design which are formulated as a topology optimization problem. Indeed, by imposing the magnetic field inside a region, we search a best material distribution into variable domains. In order to perform this, we minimize the quadratic error between the prescribed magnetic … Read more

Iteration-Complexity of a Generalized Forward Backward Splitting Algorithm

In this paper, we analyze the iteration-complexity of a generalized forward-backward (GFB) splitting algorithm, recently proposed in~\cite{gfb2011}, for minimizing the large class of composite objectives $f + \sum_{i=1}^n h_i$ on a Hilbert space, where $f$ has a Lipschitz-continuous gradient and the $h_i$’s are simple (i.e. whose proximity operator is easily computable ). We derive iteration-complexity … Read more

A framework for automated PDE-constrained optimisation

A generic framework for the solution of PDE-constrained optimisation problems based on the FEniCS system is presented. Its main features are an intuitive mathematical interface, a high degree of automation, and an efficient implementation of the generated adjoint model. The framework is based upon the extension of a domain-specific language for variational problems to cleanly … Read more

Robust inversion, dimensionality reduction, and randomized sampling

We consider a class of inverse problems in which the forward model is the solution operator to linear ODEs or PDEs. This class admits several dimensionality-reduction techniques based on data averaging or sampling, which are especially useful for large-scale problems. We survey these approaches and their connection to stochastic optimization. The data-averaging approach is only … Read more