Mixed-Integer Optimal Control Problems with switching costs: A shortest path approach

We investigate an extension of Mixed-Integer Optimal Control Problems (MIOCPs) by adding switching costs, which enables the penalization of chattering and extends current modeling capabilities. The decomposition approach, consisting of solving a partial outer convexification to obtain a relaxed solution and using rounding schemes to obtain a discrete-valued control can still be applied, but the … Read more

Autonomous traffic at intersections: an optimization-based analysis of possible time, energy, and CO2 savings

In the growing field of autonomous driving, traffic-light controlled intersections as the nodes of large traffic networks are of special interest. We want to analyze how much an optimized coordination of vehicles and infrastructure can contribute to a more efficient transit through these bottlenecks. In addition, we are interested in sensitivity of the results with … Read more

Quasi-Monte Carlo methods for two-stage stochastic mixed-integer programs

We consider randomized QMC methods for approximating the expected recourse in two-stage stochastic optimization problems containing mixed-integer decisions in the second stage. It is known that the second-stage optimal value function is piecewise linear-quadratic with possible kinks and discontinuities at the boundaries of certain convex polyhedral sets. This structure is exploited to provide conditions implying … Read more

On sample average approximation for two-stage stochastic programs without relatively complete recourse

We investigate sample average approximation (SAA) for two-stage stochastic programs without relatively complete recourse, i.e., for problems in which there are first-stage feasible solutions that are not guaranteed to have a feasible recourse action. As a feasibility measure of the SAA solution, we consider the “recourse likelihood”, which is the probability that the solution has … Read more

Computational Aspects of Infeasibility Analysis in Mixed Integer Programming

The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The … Read more

Rational Polyhedral Outer-Approximations of the Second-Order Cone

It is well-known that the second-order cone can be outer-approximated to an arbitrary accuracy by a polyhedral cone of compact size defined by irrational data. In this paper, we propose two rational polyhedral outer-approximations of compact size retaining the same guaranteed accuracy. The first outer-approximation has the same size as the optimal but irrational outer-approximation … Read more

Outlier detection in time series via mixed-integer conic quadratic optimization

We consider the problem of estimating the true values of a Wiener process given noisy observations corrupted by outliers. The problem considered is closely related to the Trimmed Least Squares estimation problem, a robust estimation procedure well-studied from a statistical standpoint but poorly understood from an optimization perspective. In this paper we show how to … Read more

Optimization and Validation of Pumping System Design and Operation for Water Supply in High-Rise Buildings

The application of mathematical optimization methods provides the capacity to increase the energy efficiency and to lower the investment costs of technical systems, considerably. We present a system approach for the optimization of the design and operation of pumping systems and exemplify it by applying it to the water supply of high-rise buildings. The underlying … Read more

Stochastic Optimization Models of Insurance Mathematics

The paper overviews stochastic optimization models of insurance mathematics and methods for their solution from the point of view of stochastic programming and stochastic optimal control methodology, with vector optimality criteria. The evolution of an insurance company’s capital is considered in discrete time. The main random variables, which influence this evolution, are levels of payments, … Read more

New MINLP Formulations for the Unit Commitment Problems with Ramping Constraints

The Unit Commitment (UC) problem in electrical power production requires to optimally operate a set of power generation units over a short time horizon (one day to a week). Operational constraints of each unit depend on its type (e.g., thermal, hydro, nuclear, …), and can be rather complex. For thermal units, typical ones concern minimum … Read more