On a time consistency concept in risk averse multi-stage stochastic programming

In this paper we discuss time consistency of multi-stage risk averse stochastic programming problems. We approach the concept of time consistency from an optimization point of view. That is, at each state of the system optimality of a decision policy should not involve states which cannot happen in the future. We also discuss a relation … Read more

Semidefinite Programming Approaches to Distance Geometry Problems

Given a subset of all the pair-wise distances between a set of points in a fixed dimension, and possibly the positions of few of the points (called anchors), can we estimate the (relative) positions of all the unknown points (in the given dimension) accurately? This problem is known as the Euclidean Distance Geometry or Graph … Read more

Convergence of stochastic average approximation for stochastic optimization problems with mixed expectation and per-scenario constraints

We present a framework for ensuring convergence of sample average approximations to stochastic optimization problems that include expectation constraints in addition to per-scenario constraints. Citation Preprint ANL/MCS 1562-1108 Article Download View Convergence of stochastic average approximation for stochastic optimization problems with mixed expectation and per-scenario constraints

Full Nesterov-Todd Step Interior-Point Methods for Symmetric Optimization

Some Jordan algebras were proved more than a decade ago to be an indispensable tool in the unified study of interior-point methods. By using it, we generalize the infeasible interior-point method for linear optimization of Roos [SIAM J. Optim., 16(4):1110–1136 (electronic), 2006] to symmetric optimization. This unifies the analysis for linear, second-order cone and semidefinite … Read more

Counter Example to A Conjecture on Infeasible Interior-Point Methods

Based on extensive computational evidence (hundreds of thousands of randomly generated problems) the second author conjectured that $\bar{\kappa}(\zeta)=1$, which is a factor of $\sqrt{2n}$ better than that has been proved, and which would yield an $O(\sqrt{n})$ iteration full-Newton step infeasible interior-point algorithm. In this paper we present an example showing that $\bar{\kappa}(\zeta)$ is in the … Read more

On a class of limited memory preconditioners for large scale linear systems with multiple right-hand sides

This work is concerned with the development and study of a class of limited memory preconditioners for the solution of sequences of linear systems. To this aim, we consider linear systems with the same symmetric positive definite matrix and multiple right-hand sides available in sequence. We first propose a general class of preconditioners, called Limited … Read more

Reformulations in Mathematical Programming: Symmetry

If a mathematical program (be it linear or nonlinear) has many symmetric optima, solving it via Branch-and-Bound techniques often yields search trees of disproportionate sizes; thus, finding and exploiting symmetries is an important task. We propose a method for automatically finding the formulation group of any given Mixed-Integer Nonlinear Program, and reformulating the problem so … Read more

A proximal method for composite minimization

We consider minimization of functions that are compositions of convex or prox-regular functions (possibly extended-valued) with smooth vector functions. A wide variety of important optimization problems fall into this framework. We describe an algorithmic framework based on a subproblem constructed from a linearized approximation to the objective and a regularization term. Properties of local solutions … Read more

A Randomized Cutting Plane Method with Probabilistic Geometric Convergence

We propose a randomized method for general convex optimization problems; namely, the minimization of a linear function over a convex body. The idea is to generate N random points inside the body, choose the best one and cut the part of the body defined by the linear constraint. We first analyze the convergence properties of … Read more

Approximating Hessians in multilevel unconstrained optimization

We consider Hessian approximation schemes for large-scale multilevel unconstrained optimization problems, which typically present a sparsity and partial separability structure. This allows iterative quasi-Newton methods to solve them despite of their size. Structured finite-difference methods and updating schemes based on the secant equation are presented and compared numerically inside the multilevel trust-region algorithm proposed by … Read more