Global convergence of a derivative-free inexact restoration filter algorithm for nonlinear programming

In this work we present an algorithm for solving constrained optimization problems that does not make explicit use of the objective function derivatives. The algorithm mixes an inexact restoration framework with filter techniques, where the forbidden regions can be given by the flat or slanting filter rule. Each iteration is decomposed in two independent phases: … Read more

A special case of the generalized pooling problem arising in the mining industry

Iron ore and coal are substantial contributors to Australia’s export economy. Both are blended products that are made-to-order according to customers’ desired product qualities. Mining companies have a great interest in meeting these target qualities since deviations generally result in contractually agreed penalties. This paper studies a variation of the generalized pooling problem (GPP) arising … Read more

Pickup and delivery problem with time windows: a new compact two-index formulation

We propose a formulation for the pickup and delivery problem with time windows, based on a novel modeling strategy that allows the assignment of vehicles to routes explicitly in two-index flow formulations. It leads to an effective compact formulation that can benefit OR practitioners interested in solving the problem by general-purpose optimization software. Computational experiments … Read more

A Frank-Wolfe Based Branch-and-Bound Algorithm for Mean-Risk Optimization

We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems … Read more

Constructing a Small Compact Binary Model for the Travelling Salesman Problem

A variety of formulations for the Travelling Salesman Problem as Mixed Integer Program have been proposed. They contain either non-binary variables or the number of constraints and variables is large. We want to give a new formulation that consists solely of binary variables; the number of variables and the number of constraints are of order … Read more

A Derivative-Free Trust-Region Algorithm for the Optimization of Functions Smoothed via Gaussian Convolution Using Adaptive Multiple Importance Sampling

In this paper we consider the optimization of a functional $F$ defined as the co nvolution of a function $f$ with a Gaussian kernel. We propose this type of objective function for the optimization of the output of complex computational simulations, which often present some form of deterministic noise and need to be smoothed for … Read more

A Data Driven Functionally Robust Approach for Coordinating Pricing and Order Quantity Decisions with Unknown Demand Function

We consider a retailer’s problem of optimal pricing and inventory stocking decisions for a product. We assume that the price-demand curve is unknown, but data is available that loosely specifies the price-demand relationship. We propose a conceptually new framework that simultaneously considers pricing and inventory decisions without a priori fitting a function to the price-demand … Read more

Another pedagogy for pure-integer Gomory

We present pure-integer Gomory cuts in a way so that they are derived with respect to a “dual form” pure-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. The input integer problem is not in standard form, and so the cuts are derived a bit differently. In … Read more

Simplified semidefinite and completely positive relaxations

This paper is concerned with completely positive and semidefinite relaxations of quadratic programs with linear constraints and binary variables as presented by Burer. It observes that all constraints of the relaxation associated with linear constraints of the original problem can be accumulated in a single linear constraint without changing the feasible set of either the … Read more

BOUNDS AND APPROXIMATIONS FOR MULTISTAGE STOCHASTIC PROGRAMS

Consider (typically large) multistage stochastic programs, which are defined on scenario trees as the basic data structure. It is well known that the computational complexity of the solution depends on the size of the tree, which itself increases typically exponentially fast with its height, i.e. the number of decision stages. For this reason approximations which … Read more