Geometry of 3D Environments and Sum of Squares Polynomials

Motivated by applications in robotics and computer vision, we study problems related to spatial reasoning of a 3D environment using sublevel sets of polynomials. These include: tightly containing a cloud of points (e.g., representing an obstacle) with convex or nearly-convex basic semialgebraic sets, computation of Euclidean distance between two such sets, separation of two convex … Read more

Statistical Inference of Semidefinite Programming

In this paper we consider covariance structural models with which we associate semidefinite programming problems. We discuss statistical properties of estimates of the respective optimal value and optimal solutions when the `true’ covariance matrix is estimated by its sample counterpart. The analysis is based on perturbation theory of semidefinite programming. As an example we consider … Read more

Some theoretical limitations of second-order algorithms for smooth constrained optimization

In second-order algorithms, we investigate the relevance of the constant rank of the full set of active constraints in ensuring global convergence to a second-order stationary point. We show that second-order stationarity is not expected in the non-constant rank case if the growth of the so-called tangent multipliers, associated with a second-order complementarity measure, is … Read more

Robust combinatorial optimization with knapsack uncertainty

We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertismas and Sim (2003). We also study the … Read more

On the Fermat point of a triangle

For a given triangle $\triangle ABC$, Pierre de Fermat posed around 1640 the problem of finding a point $P$ minimizing the sum $s_P$ of the Euclidean distances from $P$ to the vertices $A$, $B$, $C$. Based on geometrical arguments this problem was first solved by Torricelli shortly after, by Simpson in 1750, and by several … Read more

A polynomial algorithm for linear feasibility problems given by separation oracles

The algorithm proposed in this paper runs in a polynomial oracle time, i.e., in a number of arithmetic operations and calls to the separation oracle bounded by a polynomial in the number of variables and in the maximum binary size of an entry of the coefficient matrix. This algorithm is much simpler than traditional polynomial … Read more

A Condensing Algorithm for Nonlinear MPC with a Quadratic Runtime in Horizon Length

A large number of practical algorithms for Optimal Control Problems (OCP) relies on a so-called condensing procedure to exploit the given structure in the quadratic programming (QP) subproblems. While the established structure-exploiting condensing algorithm is of cubic complexity in the horizon length, in this technical note we propose a novel algorithm that is only of … Read more

Polytopes Associated with Symmetry Handling

This paper investigates a polyhedral approach to handle symmetries in mixed-binary programs. We study symretopes, i.e., the convex hulls of all binary vectors that are lexicographically maximal in their orbit with respect to the symmetry group. These polytopes turn out to be quite complex. For practical use, we therefore develop an integer programming formulation with … Read more

On the Structure of Linear Programs with Overlapping Cardinality Constraints

Cardinality constraints enforce an upper bound on the number of variables that can be nonzero. This article investigates linear programs with cardinality constraints that mutually overlap, i.e., share variables. We present the components of a branch-and-cut solution approach, including new branching rules that exploit the structure of the corresponding conflict hypergraph. We also investigate valid … Read more

On the steplength selection in gradient methods for unconstrained optimization

The seminal paper by Barzilai and Borwein [IMA J. Numer. Anal. 8 (1988)] has given rise to an extensive investigation aimed at developing effective gradient methods, able to deal with large-scale optimization problems. Several steplength rules have been first designed for unconstrained quadratic problems and then extended to general nonlinear problems; these rules share the … Read more