EETTlib – Energy-Efficient Train Timetabling Library

We introduce EETTlib, an instance library for the Energy-Efficient Train Timetabling problem. The task in this problem is to adjust a given timetable draft such that several key indicators relating to the energy consumption of the resulting railway traffic are minimized. These include peak power consumption, total energy consumption, loss in recuperation energy, fluctuation in … Read more

A Local MM Subspace Method for Solving Constrained Variational Problems in Image Recovery

This article introduces a new Penalized Majorization-Minimization Subspace algorithm (P-MMS) for solving smooth, constrained optimization problems. In short, our approach consists of embedding a subspace algorithm in an inexact exterior penalty procedure. The subspace strategy, combined with a Majoration-Minimization step-size search, takes great advantage of the smoothness of the penalized cost function, while the penalty … Read more

The multiphase course timetabling problem

This paper introduces the multiphase course timetabling problem and presents mathematical formulations and effective solution algorithms to solve it in a real case study. Consider a pool of lessons and a number of students who are required to take a subset of these lessons to graduate. Each lesson consists of a predetermined and consecutive sequence … Read more

A quasi-Newton method with Wolfe line searches for multiobjective optimization

We propose a BFGS method with Wolfe line searches for unconstrained multiobjective optimization problems. The algorithm is well defined even for general nonconvex problems. Global convergence and R-linear convergence to a Pareto optimal point are established for strongly convex problems. In the local convergence analysis, if the objective functions are locally strongly convex with Lipschitz … Read more

A simple Introduction to higher order liftings for binary problems

A short, simple, and self-contained proof is presented showing that $n$-th lifting for the max-cut-polytope is exact. The proof re-derives the known observations that the max-cut-polytope is the projection of a higher-dimensional regular simplex and that this simplex coincides with the $n$-th semidefinite lifting. An extension to reduce the dimension of higher order liftings and … Read more

An extended delayed weighted gradient algorithm for solving strongly convex optimization problems

The recently developed delayed weighted gradient method (DWGM) is competitive with the well-known conjugate gradient (CG) method for the minimization of strictly convex quadratic functions. As well as the CG method, DWGM has some key optimality and orthogonality properties that justify its practical performance. The main difference with the CG method is that, instead of … Read more

A Cubic Regularization of Newton’s Method with Finite-Difference Hessian Approximations

In this paper, we present a version of the Cubic Regularization of Newton’s method for unconstrained nonconvex optimization, in which the Hessian matrices are approximated by forward finite difference Hessians. The regularization parameter of the cubic models and the accuracy of the Hessian approximations are jointly adjusted using a nonmonotone line-search criterion. Assuming that the … Read more

Multi-Mode Capacitated Lot Sizing Problem with Periodic Carbon Emission Constraints

this paper, we study the single item capacitated multi-mode lot sizing problem with periodic carbon emission constraints where the carbon emission constraints define an upper bound for the average emission per product produced in any period. The uncapacitated version of this problem was introduced in Absi et al. (2013) and solved in polynomial time. We … Read more

Effective Scenarios in Multistage Distributionally Robust Optimization with a Focus on Total Variation Distance

We study multistage distributionally robust optimization (DRO) to hedge against ambiguity in quantifying the underlying uncertainty of a problem. Recognizing that not all the realizations and scenario paths might have an “effect” on the optimal value, we investigate the question of how to define and identify critical scenarios for nested multistage DRO problems. Our analysis … Read more

Nonlinear matrix recovery using optimization on the Grassmann manifold

We investigate the problem of recovering a partially observed high-rank matrix whose columns obey a nonlinear structure such as a union of subspaces, an algebraic variety or grouped in clusters. The recovery problem is formulated as the rank minimization of a nonlinear feature map applied to the original matrix, which is then further approximated by … Read more