Empirical Bounds on Linear Regions of Deep Rectifier Networks

One form of characterizing the expressiveness of a piecewise linear neural network is by the number of linear regions, or pieces, of the function modeled. We have observed substantial progress in this topic through lower and upper bounds on the maximum number of linear regions and a counting procedure. However, these bounds only account for … Read more

Low-M-Rank Tensor Completion and Robust Tensor PCA

In this paper, we propose a new approach to solve low-rank tensor completion and robust tensor PCA. Our approach is based on some novel notion of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank. We discuss the connections between these new tensor ranks and the CP-rank and … Read more

Structural Properties of Feasible Bookings in the European Entry-Exit Gas Market System

In this work we analyze the structural properties of the set of feasible bookings in the European entry-exit gas market system. We present formal definitions of feasible bookings and then analyze properties that are important if one wants to optimize over them. Thus, we study whether the sets of feasible nominations and bookings are bounded, … Read more

Wasserstein Distributionally Robust Kalman Filtering

We study a distributionally robust mean square error estimation problem over a nonconvex Wasserstein ambiguity set containing only normal distributions. We show that the optimal estimator and the least favorable distribution form a Nash equilibrium. Despite the non-convex nature of the ambiguity set, we prove that the estimation problem is equivalent to a tractable convex … Read more

Clustering methods to find representative periods for the optimization of energy systems: an initial framework and comparison

Modeling time-varying operations in complex energy systems optimization problems is often computationally intractable, and time-series input data are thus often aggregated to representative periods. In this work, we introduce a framework for using clustering methods for this purpose, and we compare both conventionally-used methods (k-means, k-medoids, and hierarchical clustering), and shape-based clustering methods (dynamic time … Read more

A mixed-integer fractional optimization approach to best subset selection

We consider the best subset selection problem in linear regression, i.e., finding a parsimonious subset of the regression variables that provides the best fit to the data according to some predefined criterion. We show that, for a broad range of criteria used in the statistics literature, the best subset selection problem can be modeled as … Read more

Location and Capacity Planning of Facilities with General Service-Time Distributions Using Conic Optimization

This paper studies a stochastic congested location problem in the network of a service system that consists of facilities to be established in a finite number of candidate locations. Population zones allocated to each open service facility together creates a stream of demand that follows a Poisson process and may cause congestion at the facility. … Read more

An Integer Programming Formulation of the Key Management Problem in Wireless Sensor Networks

With the advent of modern communications systems, much attention has been put on developing methods for securely transferring information between constituents of wireless sensor networks. To this effect, we introduce a mathematical programming formulation for the key management problem, which broadly serves as a mechanism for encrypting communications. In particular, an integer programming model of … Read more

Time-Varying Semidefinite Programs

We study time-varying semidefinite programs (TV-SDPs), which are semidefinite programs whose data (and solutions) are functions of time. Our focus is on the setting where the data varies polynomially with time. We show that under a strict feasibility assumption, restricting the solutions to also be polynomial functions of time does not change the optimal value … Read more

ACQUIRE: an inexact iteratively reweighted norm approach for TV-based Poisson image restoration

We propose a method, called ACQUIRE, for the solution of constrained optimization problems modeling the restoration of images corrupted by Poisson noise. The objective function is the sum of a generalized Kullback-Leibler divergence term and a TV regularizer, subject to nonnegativity and possibly other constraints, such as flux conservation. ACQUIRE is a line-search method that … Read more