Data-Dependent Complexity of First-Order Methods for Binary Classification

Large-scale problems in data science are often modeled with optimization, and the optimization model is usually solved with first-order methods that may converge at a sublinear rate. Therefore, it is of interest to terminate the optimization algorithm as soon as the underlying data science task is accomplished. We consider FISTA for solving two binary classification … Read more

A Theoretical Framework for Auxiliary-Loss-Free Load Balancing of Sparse Mixture-of-Experts in Large-Scale AI Models

In large-scale AI training, Sparse Mixture-of-Experts (s-MoE) layers enable scaling by activating only a small subset of experts per token. An operational challenge in this design is load balancing: routing tokens to minimize the number of idle experts, which is important for the efficient utilization of (costly) GPUs. We provide a theoretical framework for analyzing … Read more

Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations

We study Sparse Multiple Kernel Learning (SMKL), which is the problem of selecting a sparse convex combination of prespecified kernels for support vector binary classification. Unlike prevailing \(\ell_1\)‐regularized approaches that approximate a sparsifying penalty, we formulate the problem by imposing an explicit cardinality constraint on the kernel weights and add an \(\ell_2\) penalty for robustness. … Read more

Subgame Perfect Methods in Nonsmooth Convex Optimization

This paper considers nonsmooth convex optimization with either a subgradient or proximal operator oracle. In both settings, we identify algorithms that achieve the recently introduced game-theoretic optimality notion for algorithms known as subgame perfection. Subgame perfect algorithms meet a more stringent requirement than just minimax optimality. Not only must they provide optimal uniform guarantees on … Read more

On the Convergence of Constrained Gradient Method

The constrained gradient method (CGM) has recently been proposed to solve convex optimization and monotone variational inequality (VI) problems with general functional constraints. While existing literature has established convergence results for CGM, the assumptions employed therein are quite restrictive; in some cases, certain assumptions are mutually inconsistent, leading to gaps in the underlying analysis. This … Read more

Supermodularity, Curvature, and Convex Relaxations in a Class of Quadratic Binary Optimization Problems

We study the combinatorial structure of a quadratic set function $F(S)$ arising from a class of binary optimization models within the family of undesirable facility location problems. Despite strong empirical evidence of nested optimal solutions in previously studied real-world instances, we show that $F(S)$ is, in general, neither submodular nor supermodular. To quantify deviation from … Read more

Min-Max Optimization Is Strictly Easier Than Variational Inequalities

Classically, a mainstream approach for solving a convex-concave min-max problem is to instead solve the variational inequality problem arising from its first-order optimality conditions. Is it possible to solve min-max problems faster by bypassing this reduction? This paper initiates this investigation. We show that the answer is yes in the textbook setting of unconstrained quadratic … Read more

A One-Extra Player Reduction of GNEPs to NEPs

It is common opinion that generalized Nash equilibrium problems are harder than Nash equilibrium problems. In this work, we show that by adding a new player, it is possible to reduce many generalized problems to standard equilibrium problems. The reduction holds for linear problems and smooth convex problems verifying a Slater-type condition. We also derive … Read more

Preconditioned subgradient method for composite optimization: overparameterization and fast convergence

Composite optimization problems involve minimizing the composition of a smooth map with a convex function. Such objectives arise in numerous data science and signal processing applications, including phase retrieval, blind deconvolution, and collaborative filtering. The subgradient method achieves local linear convergence when the composite loss is well-conditioned. However, if the smooth map is, in a … Read more

Lyapunov-based Analysis on First Order Method for Composite Strong-Weak Convex Functions

The Nesterov’s accelerated gradient (NAG) method generalizes the classical gradient descent algorithm by improving the convergence rate from $\mathcal{O}\left(\frac{1}{t}\right)$ to $\mathcal{O}\left(\frac{1}{t^2}\right)$ in convex optimization. This study examines the proximal gradient framework for additively separable composite functions with smooth and non-smooth components. We demonstrate that Nesterov’s accelerated proximal gradient (NAPG$_\alpha$) method attains a convergence rate of … Read more