A Rank-One-Update Method for the Training of Support Vector Machines

This paper considers convex quadratic programs associated with the training of support vector machines (SVM). Exploiting the special structure of the SVM problem a new type of active set method with long cycles and stable rank-one-updates is proposed and tested (CMU: cycling method with updates). The structure of the problem allows for a repeated simple … Read more

A Universally Optimal Primal-Dual Method for Minimizing Heterogeneous Compositions

This paper proposes a universal, optimal algorithm for convex minimization problems of the composite form $g_0(x)+h(g_1(x),\dots, g_m(x)) + u(x)$. We allow each $g_j$ to independently range from being nonsmooth Lipschitz to smooth, from convex to strongly convex, described by notions of H\”older continuous gradients and uniform convexity. Note that, although the objective is built from … Read more

On Sum-Rules for Second-Order Contingent Derivatives

We are concerned with contingent derivatives and their second-order counterparts (introduced by Ngai et al.) of set-valued mappings. Special attention is given to the development of new sum-rules for second-order contingent derivatives. To be precise, we want to find conditions under which the second-order contingent derivative of the sum of a smooth and a set-valued … Read more

A new problem qualification based on approximate KKT conditions for Lipschitzian optimization with application to bilevel programming

When dealing with general Lipschitzian optimization problems, there are many problem classes where even weak constraint qualications fail at local minimizers. In contrast to a constraint qualification, a problem qualification does not only rely on the constraints but also on the objective function to guarantee that a local minimizer is a Karush-Kuhn-Tucker (KKT) point. For … Read more

Relaxation methods for pessimistic bilevel optimization

We consider a smooth pessimistic bilevel optimization problem, where the lower-level problem is convex and satisfies the Slater constraint qualification. These assumptions ensure that the Karush-Kuhn-Tucker (KKT) reformulation of our problem is well-defined. We then introduce and study the (i) Scholtes, (ii) Lin and Fukushima, (iii) Kadrani, Dussault and Benchakroun, (iv) Steffensen and Ulbrich, and … Read more

Interior-point algorithms with full Newton steps for nonsymmetric convex conic optimization

We design and analyze primal-dual, feasible interior-point algorithms (IPAs) employing full Newton steps to solve convex optimization problems in standard conic form. Unlike most nonsymmetric cone programming methods, the algorithms presented in this paper require only a logarithmically homogeneous self-concordant barrier (LHSCB) of the primal cone, but compute feasible and \(\varepsilon\)-optimal solutions to both the … Read more

Provable and Practical Online Learning Rate Adaptation with Hypergradient Descent

This paper investigates the convergence properties of the hypergradient descent method (HDM), a 25-year-old heuristic originally proposed for adaptive stepsize selection in stochastic first-order methods. We provide the first rigorous convergence analysis of HDM using the online learning framework of [Gao24] and apply this analysis to develop new state-of-the-art adaptive gradient methods with empirical and … Read more

Mean and variance estimation complexity in arbitrary distributions via Wasserstein minimization

Parameter estimation is a fundamental challenge in machine learning, crucial for tasks such as neural network weight fitting and Bayesian inference. This paper focuses on the complexity of estimating translation μ∈R^l and shrinkage σ∈R++ parameters for a distribution of the form (1/sigma^l) f_0((x−μ)/σ), where f_0 is a known density in R^l given n samples. We … Read more

Convergence of Descent Optimization Algorithms under Polyak-Lojasiewicz-Kurdyka Conditions

This paper develops a comprehensive convergence analysis for generic classes of descent algorithms in nonsmooth and nonconvex optimization under several conditions of the Polyak-Lojasiewicz-Kurdyka (PLK) type. Along other results, we prove the finite termination of generic algorithms under the PLK conditions with lower exponents. Specifications are given to establish new convergence rates for inexact reduced … Read more

A necessary condition for the guarantee of the superiorization method

We study a method that involves principally convex feasibility-seeking and makes secondary efforts of objective function value reduction. This is the well-known superiorization method (SM), where the iterates of an asymptotically convergent iterative feasibility-seeking algorithm are perturbed by objective function nonascent steps. We investigate the question under what conditions a sequence generated by an SM … Read more