Implied Integrality in Mixed-Integer Optimization

Implied-integer detection is a well-known presolving technique that is used by many Mixed-Integer Linear Programming solvers. Informally, a variable is said to be implied integer if its integrality is enforced implicitly by integrality of other variables and the constraints of a problem. In this work we formalize the definition of implied integrality by taking a … Read more

Strength of the Upper Bounds for the Edge-Weighted Maximum Clique Problem

We theoretically and computationally compare the strength of the two main upper bounds from the literature on the optimal value of the Edge-Weighted Maximum Clique Problem (EWMCP). We provide a set of instances for which the ratio between either of the two upper bounds and the optimal value of the EWMCP is unbounded. This result … Read more

Best-Response Dynamics for Large-Scale Integer Programming Games with Applications to Aquatic Invasive Species Prevention

This paper presents a scalable algorithm for computing the best pure Nash equilibrium (PNE) in large-scale integer programming games (IPGs). While recent advances in IPG algorithms are extensive, existing methods are limited to a small number of players, typically đť‘› = 2, 3. Motivated by a county-level aquatic invasive species (AIS) prevention problem involving 84 … Read more

A Dantzig-Wolfe Single-Level Reformulation for Mixed-Integer Linear Bilevel Optimization: Exact and Heuristic Approaches

Bilevel optimization problems arise in numerous real-world applications. While single-level reformulations are a common strategy for solving convex bilevel problems, such approaches usually fail when the follower’s problem includes integer variables. In this paper, we present the first single-level reformulation for mixed-integer linear bilevel optimization, which does not rely on the follower’s value function. Our … Read more

A relax-fix-and-exclude algorithm for an MINLP problem with multilinear interpolations

This paper introduces a novel algorithm for Mixed-Integer Nonlinear Programming (MINLP) problems with multilinear interpolations of look-up tables. These problems arise when objectives or constraints contain black-box functions only known at a finite set of evaluations on a predefined grid. We derive a piecewise-linear relaxation for the multilinear interpolants, which require an MINLP formulation. Supported … Read more

Two-way Cutting-plane Algorithm for Best Subset Selection Considering Multicollinearity

When linear dependence exists between some explanatory variables in a regression model, the estimates of regression coefficients become unstable, thereby making the interpretation of the estimation results unreliable. To eliminate such multicollinearity, we propose a high-performance method for selecting the best subset of explanatory variables for linear and logistic regression models. Specifically, we first derive … Read more

Branch-and-Cut for Mixed-Integer Generalized Nash Equilibrium Problems

Generalized Nash equilibrium problems with mixed-integer variables form an important class of games in which each player solves a mixed-integer optimization problem with respect to her own variables and the strategy space of each player depends on the strategies chosen by the rival players. In this work, we introduce a branch-and-cut algorithm to compute exact … Read more

On Multidimensonal Disjunctive Inequalities for Chance-Constrained Stochastic Problems with Finite Support

We consider mixed-integer linear chance-constrained problems for which the random vector that parameterizes the feasible region has finite support. Our key objective is to improve branch-and-bound or -cut approaches by introducing new types of valid inequalities that improve the dual bounds and, by this, the overall performance of such methods. We introduce so-called primal-dual as … Read more

Mixed-Feature Logistic Regression Robust to Distribution Shifts

Logistic regression models are widely used in the social and behavioral sciences and in high-stakes domains, due to their simplicity and interpretability properties. At the same time, such domains are permeated by distribution shifts, where the distribution generating the data changes between training and deployment. In this paper, we study a distributionally robust logistic regression … Read more

Inverse Optimization via Learning Feasible Regions

We study inverse optimization (IO), where the goal is to use a parametric optimization program as the hypothesis class to infer relationships between input-decision pairs. Most of the literature focuses on learning only the objective function, as learning the constraint function (i.e., feasible regions) leads to nonconvex training programs. Motivated by this, we focus on … Read more