A surplus-maximizing two-sided multi-period non-convex ISO auction market

Since the inception of ISOs, Locational Marginal Prices (LMPs) alone were not market clearing or incentive compatible because an auction winner who offered its avoidable costs could lose money at the LMPs. ISOs used make-whole payments to ensure that market participants did not lose money. Make-whole payments were not public, creating transparency issues. Over time, … Read more

Responsible Machine Learning via Mixed-Integer Optimization

In the last few decades, Machine Learning (ML) has achieved significant success across domains ranging from healthcare, sustainability, and the social sciences, to criminal justice and finance. But its deployment in increasingly sophisticated, critical, and sensitive areas affecting individuals, the groups they belong to, and society as a whole raises critical concerns around fairness, transparency … Read more

Alternating Methods for Large-Scale AC Optimal Power Flow with Unit Commitment

Security-constrained unit commitment with alternating current optimal power flow (SCUC-ACOPF) is a central problem in power grid operations that optimizes commitment and dispatch of generators under a physically accurate power transmission model while encouraging robustness against component failures.  SCUC-ACOPF requires solving large-scale problems that involve multiple time periods and networks with thousands of buses within … Read more

A Graphical Global Optimization Framework for Parameter Estimation of Statistical Models with Nonconvex Regularization Functions

Optimization problems with norm-bounding constraints appear in various applications, from portfolio optimization to machine learning, feature selection, and beyond. A widely used variant of these problems relaxes the norm-bounding constraint through Lagrangian relaxation and moves it to the objective function as a form of penalty or regularization term. A challenging class of these models uses … Read more

Quadratic Convex Reformulations for MultiObjective Binary Quadratic Programming

Multiobjective binary quadratic programming refers to optimization problems involving multiple quadratic – potentially non-convex – objective functions and a feasible set that includes binary constraints on the variables. In this paper, we extend the well-established Quadratic Convex Reformulation technique, originally developed for single-objective binary quadratic programs, to the multiobjective setting. We propose a branch-and-bound algorithm … Read more

Optimization over Trained (and Sparse) Neural Networks: A Surrogate within a Surrogate

We can approximate a constraint or an objective function that is uncertain or nonlinear with a neural network that we embed in the optimization model. This approach, which is known as constraint learning, faces the challenge that optimization models with neural network surrogates are harder to solve. Such difficulties have motivated studies on model reformulation, … Read more

The 1-persistency of the clique relaxation of the stable set polytope: a focus on some forbidden structures

A polytope $P\subseteq [0,1]^n$ is said to have the \emph{persistency} property if for every vector $c\in \R^{n}$ and every $c$-optimal point $x\in P$, there exists a $c$-optimal integer point $y\in P\cap \{0,1\}^n$ such that $x_i = y_i$ for each $i \in \{1,\dots,n\}$ with $x_i \in \{0,1\}$. In this paper, we consider a relaxation of the … Read more

Data-driven robust menu planning for food services: Reducing food waste by using leftovers

With food waste levels of about 30%, mostly caused by overproduction, reducing food waste poses an important challenge in the food service sector. As food is prepared in advance rather than on demand, there is a significant risk that meals or meal components remain uneaten. Flexible meal planning can promote the reuse of these leftovers … Read more

Global Optimization of Gas Transportation and Storage: Convex Hull Characterizations and Relaxations

Gas transportation and storage has become one of the most relevant and important optimization problems in energy systems. This problem inherently includes highly nonlinear and nonconvex aspects due to gas physics, and discrete aspects due to the control decisions of active network elements. Obtaining even locally optimal solutions for this problem presents significant mathematical and … Read more

A Survey on the Applications of Stochastic Dual Dynamic Programming and its Variants

Stochastic Dual Dynamic Programming (SDDP) is widely recognized as the predominant methodology for solving large-scale multistage stochastic linear programming (MSLP) problems. This paper aims to contribute to the extant literature by conducting a comprehensive survey of the literature on SDDP within the realm of practical applications. We systematically identify and analyze the various domains where … Read more