Rank-one Boolean tensor factorization and the multilinear polytope

We consider the NP-hard problem of approximating a tensor with binary entries by a rank-one tensor, referred to as rank-one Boolean tensor factorization problem. We formulate this problem, in an extended space of variables, as the problem of minimizing a linear function over a highly structured multilinear set. Leveraging on our prior results regarding the … Read more

Solving Two-Trust-Region Subproblems using Semidefinite Optimization with Eigenvector Branching

Semidefinite programming (SDP) problems typically utilize the constraint that X-xx’ is PSD to obtain a convex relaxation of the condition X=xx’, where x is an n-vector. In this paper we consider a new hyperplane branching method for SDP based on using an eigenvector of X-xx’. This branching technique is related to previous work of Saxeena, … Read more

The Chvátal-Gomory Procedure for Integer SDPs with Applications in Combinatorial Optimization

In this paper we study the well-known Chvátal-Gomory (CG) procedure for the class of integer semidefinite programs (ISDPs). We prove several results regarding the hierarchy of relaxations obtained by iterating this procedure. We also study different formulations of the elementary closure of spectrahedra. A polyhedral description of the elementary closure for a specific type of … Read more

A semidefinite programming approach for the projection onto the cone of negative semidefinite symmetric tensors with applications to solid mechanics

We propose an algorithm for computing the projection of a symmetric second-order tensor onto the cone of negative semidefinite symmetric tensors with respect to the inner product defined by an assigned positive definite symmetric fourth-order tensor C. The projection problem is written as a semidefinite programming problem and an algorithm based on a primal-dual path-following … Read more

A barrier Lagrangian dual method for multi-stage stochastic convex semidefinite optimization

In this paper, we present a polynomial-time barrier algorithm for solving multi-stage stochastic convex semidefinite optimization based on the Lagrangian dual method which relaxes the nonanticipativity constraints. We show that the barrier Lagrangian dual functions for our setting form self-concordant families with respect to barrier parameters. We also use the barrier function method to improve … Read more

On solving large-scale multistage stochastic problems with a new specialized interior-point approach

A novel approach based on a specialized interior-point method (IPM) is presented for solving large-scale stochastic multistage continuous optimization problems, which represent the uncertainty in strategic multistage and operational two-stage scenario trees, the latter being rooted at the strategic nodes. This new solution approach considers a split-variable formulation of the strategic and operational structures, for … Read more

Hub Network Design Problem with Capacity, Congestion and Stochastic Demand Considerations

We introduce the hub network design problem with congestion, capacity, and stochastic demand considerations (HNDC), which generalizes the classical hub location problem in several directions. In particular, we extend state-of-the-art by integrating capacity acquisition decision and congestion cost effect into the problem and allowing dynamic routing for origin-destination pairs. Connecting strategic and operational level decisions, … Read more

New interior-point approach for one- and two-class linear support vector machines using multiple variable splitting

Multiple variable splitting is a general technique for decomposing problems by using copies of variables and additional linking constraints that equate their values. The resulting large optimization problem can be solved with a specialized interior-point method that exploits the problem structure and computes the Newton direction with a combination of direct and iterative solvers (i.e., … Read more

An effective version of Schmüdgen’s Positivstellensatz for the hypercube

Let S be a compact semialgebraic set and let f be a polynomial nonnegative on S. Schmüdgen’s Positivstellensatz then states that for any \eta>0, the nonnegativity of f+\eta on S can be certified by expressing f+\eta as a conic combination of products of the polynomials that occur in the inequalities defining S, where the coefficients … Read more

On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization

We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be optimized simultaneously under the … Read more