Optimal error bounds in the absence of constraint qualifications with applications to the p-cones and beyond

We prove tight Hölderian error bounds for all p-cones. Surprisingly, the exponents differ in several ways from those that have been previously conjectured; moreover, they illuminate p-cones as a curious example of a class of objects that possess properties in 3 dimensions that they do not in 4 or more. Using our error bounds, we … Read more

Log-domain interior-point methods for convex quadratic programming

Applying an interior-point method to the central-path conditions is a widely used approach for solving quadratic programs. Reformulating these conditions in the log-domain is a natural variation on this approach that to our knowledge is previously unstudied. In this paper, we analyze log-domain interior-point methods and prove their polynomial-time convergence. We also prove that they … Read more

Efficient Joint Object Matching via Linear Programming

Joint object matching, also known as multi-image matching, namely, the problem of finding consistent partial maps among all pairs of objects within a collection, is a crucial task in many areas of computer vision. This problem subsumes bipartite graph matching and graph partitioning as special cases and is NP-hard, in general. We develop scalable linear … Read more

Solving a Class of Cut-Generating Linear Programs via Machine Learning

Cut-generating linear programs (CGLPs) play a key role as a separation oracle to produce valid inequalities for the feasible region of mixed-integer programs. When incorporated inside branch-and-bound, the cutting planes obtained from CGLPs help to tighten relaxations and improve dual bounds. However, running the CGLPs at the nodes of the branch-and-bound tree is computationally cumbersome … Read more

Bishop-Phelps cones given by an equation in Banach spaces

In this work, we study Bishop-Phelps cones (briefly, BP cones) given by an equation in Banach spaces. Due to the special form, these cones enjoy interesting properties. We show that nontrivial BP cones given by an equation form a “large family” in some sense in any Banach space and they can be used to characterize … Read more

Generating Cutting Inequalities Successively for Quadratic Optimization Problems in Binary Variables

We propose a successive generation of cutting inequalities for binary quadratic optimization problems. Multiple cutting inequalities are successively generated for the convex hull of the set of the optimal solutions $\subset \{0, 1\}^n$, while the standard cutting inequalities are used for the convex hull of the feasible region. An arbitrary linear inequality with integer coefficients … Read more

Exactness in SDP relaxations of QCQPs: Theory and applications

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems. In a QCQP, we are asked to minimize a (possibly nonconvex) quadratic function subject to a number of (possibly nonconvex) quadratic constraints. Such problems arise naturally in many areas of operations research, computer science, and engineering. Although QCQPs are NP-hard to solve in … Read more

First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition

The well known constant rank constraint qualification [Math. Program. Study 21:110–126, 1984] introduced by Janin for nonlinear programming has been recently extended to a conic context by exploiting the eigenvector structure of the problem. In this paper we propose a more general and geometric approach for defining a new extension of this condition to the … Read more

The Promise of EV-Aware Multi-Period OPF Problem: Cost and Emission Benefits

In this paper, we study the Multi-Period Optimal Power Flow problem (MOPF) with electric vehicles (EV) under emission considerations. We integrate three different real-world datasets: household electricity consumption, marginal emission factors, and EV driving profiles. We present a systematic solution approach based on second-order cone programming to find globally optimal solutions for the resulting nonconvex … Read more

Completely Positive Factorization by a Riemannian Smoothing Method

Copositive optimization is a special case of convex conic programming, and it optimizes a linear function over the cone of all completely positive matrices under linear constraints. Copositive optimization provides powerful relaxations of NP-hard quadratic problems or combinatorial problems, but there are still many open problems regarding copositive or completely positive matrices. In this paper, … Read more