New efficient accelerated and stochastic gradient descent algorithms based on locally Lipschitz gradient constants

In this paper, we revisit the recent stepsize applied for the gradient descent scheme which is called NGD proposed by [Hoai et al., A novel stepsize for gradient descent method, Operations Research Letters (2024) 53, doi: \href{10.1016/j.orl.2024.107072}{10.1016/j.orl.2024.107072}]. We first investigate NGD stepsize with two well-known accelerated techniques which are Heavy ball and Nesterov’s methods. In … Read more

Gradient Methods with Online Scaling

We introduce a framework to accelerate the convergence of gradient-based methods with online learning. The framework learns to scale the gradient at each iteration through an online learning algorithm and provably accelerates gradient-based methods asymptotically. In contrast with previous literature, where convergence is established based on worst-case analysis, our framework provides a strong convergence guarantee … Read more

A Trust-Region Algorithm for Noisy Equality Constrained Optimization

This paper introduces a modified Byrd-Omojokun (BO) trust region algorithm to address the challenges posed by noisy function and gradient evaluations. The original BO method was designed to solve equality constrained problems and it forms the backbone of some interior point methods for general large-scale constrained optimization. A key strength of the BO method is … Read more

New results related to cutters and to an extrapolated block-iterative method for finding a common fixed point of a collection of them

Given a Hilbert space and a finite family of operators defined on the space, the common fixed point problem (CFPP) is to find a point in the intersection of the fixed point sets of these operators.  Instances of the problem have numerous applications in science and engineering. We consider an extrapolated block-iterative method with dynamic … Read more

A tutorial on properties of the epigraph reformulation

This paper systematically surveys useful properties of the epigraph reformulation for optimization problems, and complements them by some new results. We focus on the complete compatibility of the original formulation and the epigraph reformulation with respect to solvability and unsolvability, the compatibility with respect to some, but not all, basic constraint qualifications, the formulation of … Read more

Parameter-free proximal bundle methods with adaptive stepsizes for hybrid convex composite optimization problems

This paper develops a parameter-free adaptive proximal bundle method with two important features: 1) adaptive choice of variable prox stepsizes that “closely fits” the instance under consideration; and 2) adaptive criterion for making the occurrence of serious steps easier. Computational experiments show that our method performs substantially fewer consecutive null steps (i.e., a shorter cycle) … Read more

Fully First-Order Methods for Decentralized Bilevel Optimization

This paper focuses on decentralized stochastic bilevel optimization (DSBO) where agents only communicate with their neighbors. We propose Decentralized Stochastic Gradient Descent and Ascent with Gradient Tracking (DSGDA-GT), a novel algorithm that only requires first-order oracles that are much cheaper than second-order oracles widely adopted in existing works. We further provide a finite-time convergence analysis … Read more

An inexact ADMM for separable nonconvex and nonsmooth optimization

An Inexact Alternating Direction Method of Multiplies (I-ADMM) with an expansion linesearch step was developed for solving a family of separable minimization problems subject to linear constraints, where the objective function is the sum of a smooth but possibly nonconvex function and a possibly nonsmooth nonconvex function. Global convergence and linear convergence rate of the … Read more

Single-Timescale Multi-Sequence Stochastic Approximation Without Fixed Point Smoothness: Theories and Applications

Stochastic approximation (SA) that involves multiple coupled sequences, known as multiple-sequence SA (MSSA), finds diverse applications in the fields of signal processing and machine learning. However, existing theoretical understandings of MSSA are limited: the multi-timescale analysis implies a slow convergence rate, whereas the single-timescale analysis relies on a stringent fixed point smoothness assumption. This paper … Read more

Efficient parameter-free restarted accelerated gradient methods for convex and strongly convex optimization

This paper develops a new parameter-free restarted method, namely RPF-SFISTA, and a new parameter-free aggressive regularization method, namely A-REG, for solving strongly convex and convex composite optimization problems, respectively. RPF-SFISTA has the major advantage that it requires no knowledge of both the strong convexity parameter of the entire composite objective and the Lipschitz constant of … Read more