A Log-Barrier Newton-CG Method for Bound Constrained Optimization with Complexity Guarantees

We describe an algorithm based on a logarithmic barrier function, Newton’s method, and linear conjugate gradients, that obtains an approximate minimizer of a smooth function over the nonnegative orthant. We develop a bound on the complexity of the approach, stated in terms of the required accuracy and the cost of a single gradient evaluation of … Read more

Derivative-free optimization methods

In many optimization problems arising from scientific, engineering and artificial intelligence applications, objective and constraint functions are available only as the output of a black-box or simulation oracle that does not provide derivative information. Such settings necessitate the use of methods for derivative-free, or zeroth-order, optimization. We provide a review and perspectives on developments in … Read more

On monotonic estimates of the norm of the minimizers of regularized quadratic functions in Krylov spaces

We show that the minimizers of regularized quadratic functions restricted to their natural Krylov spaces increase in Euclidean norm as the spaces expand. CitationTechnical Report RAL-TR-2019-005, STFC-Rutherford Appleton Laboratory, Oxfordshire, England, April 5th 2019ArticleDownload View PDF

Error estimates for iterative algorithms for minimizing regularized quadratic subproblems

We derive bounds for the objective errors and gradient residuals when finding approximations to the solution of common regularized quadratic optimization problems within evolving Krylov spaces. These provide upper bounds on the number of iterations required to achieve a given stated accuracy. We illustrate the quality of our bounds on given test examples. CitationTechnical Report … Read more

A Delayed Weighted Gradient Method for Strictly Convex Quadratic Minimization

This paper develops an accelerated version of the steepest descent method by a two-step iteration. The new algorithm uses information with delay to define the iterations. Specifically, in the first step, a prediction of the new test point is calculated by using the gradient method with the exact minimal gradient steplength and then, a correction … Read more

An Alternating Manifold Proximal Gradient Method for Sparse PCA and Sparse CCA

Sparse principal component analysis (PCA) and sparse canonical correlation analysis (CCA) are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Since non-smoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve … Read more

Line search and convergence in bound-constrained optimization

The first part of this paper discusses convergence properties of a new line search method for the optimization of continuously differentiable functions with Lipschitz continuous gradient. The line search uses (apart from the gradient at the current best point) function values only. After deriving properties of the new, in general curved, line search, global convergence … Read more

An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem

In this work we present an Augmented Lagrangian algorithm for nonlinear semidefinite problems (NLSDPs), which is a natural extension of its consolidated counterpart in nonlinear programming. This method works with two levels of constraints; one that is penalized and other that is kept within the subproblems. This is done in order to allow exploiting the … Read more

Planning for Dynamics under Uncertainty

Planning under uncertainty is a frequently encountered problem. Noisy observation is a typical situation that introduces uncertainty. Such a problem can be formulated as a Partially Observable Markov Decision Process (POMDP). However, solving a POMDP is nontrivial and can be computationally expensive in continuous state, action, observation and latent state space. Through this work, we … Read more

Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms

One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over … Read more