Robust Admission Via Two-Stage Stable Matching Under Ranking Uncertainty

We study a two-stage admission and assignment problem under uncertainty arising in university admission systems. In the first stage, applicants are admitted to an initial two-year program. In the second stage, admitted applicants are assigned to degree programs through an articulation mechanism subject to capacity constraints. Uncertainty stems from the academic performance of admitted applicants … Read more

A Surface-Based Formulation of the Traveling Salesman Problem

We present an exact formulation of the symmetric Traveling Salesman Problem (TSP) that replaces the classical edge-selection view with a surface-building approach. Instead of selecting edges to form a cycle, the model selects a set of connected triangles where the boundary of the resulting surface forms the tour. This method yields a mixed-integer linear programming … Read more

The colored knapsack problem: structural properties and exact algorithms

We introduce and study a novel generalization of the classical Knapsack Problem (KP), called the Colored Knapsack Problem (CKP). In this problem, the items are partitioned into classes of colors and the packed items need to be ordered such that no consecutive items are of the same color. We establish that the problem is weakly … Read more

Objective-Function Free Multi-Objective Optimization: Rate of Convergence and Performance of an Adagrad-like algorithm

We propose an Adagrad-like algorithm for multi-objective unconstrained optimization that relies on the computation of a common descent direction only. Unlike classical local algorithms for multi-objective optimization, our approach does not rely on the dominance property to accept new iterates, which allows for a flexible and function-free optimization framework. New points are obtained using an … Read more

An adaptive line-search-free multiobjective gradient method and its iteration-complexity analysis

This work introduces an Adaptive Line-Search-Free Multiobjective Gradient (AMG) method for solving smooth multiobjective optimization problems. The proposed approach automatically adjusts stepsizes based on steepest descent directions, promoting robustness with respect to stepsize choice while maintaining low computational cost. The method is specifically tailored to the multiobjective setting and does not rely on function evaluations, … Read more

First-order Methods for Unconstrained Vector Optimization Problems: A Unified Majorization-Minimization Perspective

In this paper, we develop a unified majorization-minimization scheme and convergence analysis with first-order surrogate functions for unconstrained vector optimization problems (VOPs). By selecting different surrogate functions, the unified method can be reduced to various existing first-order methods. The unified convergence analysis reveals that the slow convergence of the steepest descent method is primarily attributed … Read more

The Maximum Clique Problem under Adversarial Uncertainty: a min-max approach

We analyze the problem of identifying large cliques in graphs that are affected by adversarial uncertainty. More specifically, we consider a new formulation, namely the adversarial maximum clique problem, which extends the classical maximum-clique problem to graphs with edges strategically perturbed by an adversary. The proposed mathematical model is thus formulated as a two-player zero-sum … Read more

An active-set method for box-constrained multiobjective optimization

We propose an active-set algorithm for smooth multiobjective optimization problems subject to box constraints. The method works on one face of the feasible set at a time, treating it as a lower-dimensional region on which the problem simplifies. At each iteration, the algorithm decides whether to remain on the current face or to move to … Read more

Artificial Intelligence in Supply Chain Optimization: A Systematic Review of Machine Learning Models, Methods, and Applications

Modern supply chains face mounting uncertainty and scale, motivating the integration of Artificial Intelligence (AI) and Machine Learning (ML) with mathematical optimization to enable robust and adaptive decisions. We present a systematic review of 199 articles on tangible supply chains, categorizing how ML is used—primarily for parameter estimation and for solution generation—and proposing a taxonomy … Read more

On Supportedness-Promoting Image Space Transformations in Multiobjective Optimization

We study the supportedness of nondominated points of multiobjective optimization problems, that is, whether they can be obtained via weighted sum scalarization. One key question is how supported points behave under an efficiency-preserving transformation of the original problem. Under a differentiability assumption, we characterize the transformations that preserve both efficiency and supportedness as the component-wise … Read more